Chapter- 4 Special Multiplication Methods

Multiplication in considered as one of the most difficult of the four mathematical operations. Students are scared of multiplication as well as tables. Just by knowing tables up to 5 students can multiply bigger numbers easily by some special multiplication methods of Vedic Mathematics. We should learn and encourage children to look at the special properties of each problem in order to understand it and decide the best way to solve the problem. In this way we also enhance the analytical ability of a child. Various methods of solving the questions /problems keep away the monotonous and charge up student's mind to try new ways and in turn sharpen their brains.

Easy way for multiplication

Sutra:Vertically and Cross wise :

For speed and accuracy tables are considered to be very important. Also students think why to do lengthy calculations manually when we can do them faster by calculators. So friends/ teachers we have to take up this challenge and give our students something which is more interesting and also faster than a calculator. Of course it's us (the teachers/parents) who do understand that more we use our brain, more alert and active we will be for, that is the only exercise we have for our brain.
Example 1: 7 x8
Step 1: Here base is 10 ,
$7-3 \quad(7$ is 3 below 10) also called deficiencies
$\times 8-2 \quad$ (8 is 2 below 10) also called deficiencies
Step 2: Cross subtract to get first figure (or digit) of the answer: $7-2=5$ or $8-3=5$, the two difference are always same.

Step 3 : Multiply vertically i.e. $-3 \times-2=6$ which is second part of the answer.
So, 7-3

$$
\underline{8-2} \quad \text { i.e. } 7 \times 8=56
$$

$5 / 6$
Example 2: To find 6×7
Step 1: Here base is 10 ,
6-4
(6 is 4 less than 10) i.e. deficiencies
7-3
(7 is 3 less than 10) i.e. deficiencies

Step 2: Cross subtraction : 6-3=3 or 7-4=3 (both same)
Step 3: $-3 \times-4=+12$, but 12 is 2 digit number so we carry this 1 over to 3 (obtained in 2 step) 6-4

7-3
$3 /(1) 2 \quad$ i.e. $6 \times 7=42$
Try these : (1) 9×7 (ii) 8×9 (iii) 6×9 (iv) 8×6 (v) 7×7

Second Method:

Same Base Method :

When both the numbers are more than the same base. This method is extension of the above method i.e. we are going to use same sutra here and applying it to larger numbers.
Example 1: 12×14
Step 1: Here base is 10

$$
\begin{array}{ll}
12+2 & {[12 \text { is } 2 \text { more than } 10 \text { also called surplus }]} \\
14+4 & {[14 \text { is } 4 \text { more than } 10 \text { also called surplus }]}
\end{array}
$$

Step 2: Cross add: $12+4=16$ or $14+2=16$,(both same) which gives first part of answer $=16$
Step 3: Vertical multiplication: $2 \times 4=8$
So, $12+2$
$\underline{14+4}$
$16 / 8$ So, $12 \times 14=168$
$(14+2=12+4)$
Example 2:105x 107
Step1: Here base is 100
$105+05 \quad$ [105 is 5 more than 100 or 5 is surplus]
$107+07 \quad$ [107 is 7 more than 100 or 7 is surplus]
Base here is 100 so we will write 05 in place of 5 and 07 in place of 7
Step 2: Cross add: $105+7=112$ or $107+5=112$ which gives first part of the answer $=112$
Step 3: Vertical multiplication: $05 \times 07=35$ (two digits are allowed)
As the base in this problem is 100 so two digits are allowed in the second part.
So, $105 \times 107=11235$
Example 3: 112×115
Step 1: Here base is 100
$112+12 \quad$ [2 more than 100 i.e. 12 is surplus]
$115+15 \quad$ [15 more than 100 i.e. 15 is surplus]
Step 2: Cross add: $112+15=127=115+12$ to get first part of answer
i.e. 127

Step 3: Vertical multiplication $12 \times 15=$? Oh, my god!It's such a big number. How to get product of this? Again use the same method to get the product.

$$
\begin{aligned}
& 12+2 \\
& \underline{15+5} \\
& 12+5
\end{aligned}=15+2=17 /(1) 0,17+1 / 0=180 \text { i.e. } 12 \times 15=180
$$

But only two digits are allowed here, so 1 is added to 127 and we get $(127+1)=128$
So, $112 \times 115=128,80$

Try these: (i) 12×14 (ii) 14×17 (iii) 17×19 (iv) 19×11 (v) 11×16 (vi) 112×113 (vii) 113×117 (viii) 117×111 (ix) 105×109 (x) 109×102 (xi) 105×108 (xii) 108×102 (xiii) 102×112 (xiv) 112 $\times 119$ (xv) 102×115

Both numbers less than the same base:

Same sutra applied to bigger numbers which are less than the same base.
Example1: 99×98
Step 1: Check the base: Here base is 100 so we are allowed to have two digits on the right hand side.
$\therefore 99-01 \quad(1$ less than 100$)$ i.e. 01 deficiency

$$
98-02 \quad \text { (2 less than 100) i.e. } 02 \text { deficiency }
$$

Step 2: Cross - subtract: $99-02=97=98-01$ both same so first part of answer is 97
Step3: Multiply vertically $-01 \times-02=02$ (As base is 100 so two digits are allowed in second part
So, $99 \times 98=9702$
Example 2: 89×88
Step1: Here base is 100
So, $89-11$ (i.e. deficiency $=11$)

$$
88-12 \quad \text { (i.e. deficiency }=12 \text {) }
$$

Step2: Cross subtract: $89-12=77=88-11$ (both same)
So, first part of answer can be 77
Step 3: Multiply vertically -11×-12
Again to multiply 11×12 apply same rule

$$
\begin{array}{ll}
11+1 & (10+1) \\
\underline{12+2} & (10+2)
\end{array}
$$

$11+2=13=12+1 / 1 \times 2=12$ so, $11 \times 12=(1) 32$ as only two digits are allowed on right hand side so add 1to L.H.S.
So, L.H.S. $=77+1=78$
Hence $89 \times 88=7832$
Example 3: 988×999
Step 1: As the numbers are near 1000 so the base here is 1000 and hence three digits allowed on the right hand side

$$
\begin{aligned}
& 988-012 \quad(012 \text { less than } 1000) \text { i.e. deficiency }=012 \\
& 999-001 \quad(001 \text { less than } 1000) \text { i.e. deficiency }=001
\end{aligned}
$$

Step 2: Cross - subtraction: $988-001=987=999-012=987$
So first part of answer can be 987
Step 3: Multiply vertically: $-012 \mathrm{xs}-001=012$ (three digits allowed)
$\therefore \quad 988 \times 999=987012$
How to check whether the solution is correct or not by 9 - check method.

Example 1: $99 \times 98=9702$ Using $9-$ check method.
As, $\not \supset \not \subset=0$ Product (L.H.S. $)=0 \times 8=0 \quad$ [taking $9=0$]

$$
98=8
$$

R.H.S. $=\not \varnothing 702=7+2=\not 9=0 \not \subset 702=9$ both are same

As both the sides are equal answer may be correct.
Example 2: $89 \times 88=7832$
$89=8$
$88=8+8=16=1+6=7$ (add the digits)
L.H.S. $=8 \times 7=56=5+6=11=2(1+1)$
R.H.S. $=\not 832 \not 2=8+3=11=1+1=2$

As both the sides are equal, so answer is correct
Example 3: $988 \times 999=987012$

$$
\begin{aligned}
& 988=8+8=16=1+6=7 \\
& \not \varnothing \not \varnothing \varnothing=0 \\
& \text { As } 0 \times 7=0=\text { LHS } \\
& \text { ด8 } 870 \not 122=0(\text { As } 7+2=9=0,8+1=9=0 \text { also } 9=0) \\
& \therefore \quad \mathrm{RHS}=0 \\
& \text { As LHS = RHS So, answer is correct. }
\end{aligned}
$$

Try These:

(i) 97×99 (ii) 89×89 (iii) 94×97 (iv) 89×92 (v) 93×95 (vi) 987×998 (vii) 997×988 (viii) 988 $\times 996$ (ix) 983×998 (x) 877×996 (xi) 993×994 (xii) 789×993 (xiii) 9999×998 (xiv) 7897×9997 (xv) 8987×9996.

Multiplying bigger numbers close to a base: (number less than base)
Example 1: 87798×99995
Step1: Base here is 100000 so five digits are allowed in R.H.S. 87798 - 12202 (12202 less than 100000) deficiency is 12202 99995-00005 (00005 less than100000) deficiency is 5
Step 2: Cross - subtraction: 87798-00005 =87793
Also $99995-12202=87793$ (both same)
So first part of answer can be 87793
Step 2 : Multiply vertically: $-12202 \times-00005=+61010$
$\therefore \quad 87798 \times 99995=8779361010$

Checking:

87798 total $8+7+7+8=30=3$ (single digit)
$\not \subset \not \varnothing \phi \varnothing 5$ total $=5$
LHS $=3 \times 5=15$ total $=1+5=6$

L.H.S $=$ R.H.S. So, correct answer

Example 2: 88777×99997
Step 1: Base have is 100000 so five digits are allowed in R.H.S.
88777 - 11223 i.e. deficiency is 11223
$99997-00003$ i.e. deficiency is 3
Step 2: Cross subtraction: $88777-00003=88774=99997-11223$
So first part of answer is 88774
Step 3: Multiply vertically: $-11223 \times-00003=+33669$
$\therefore \quad 88777 \times 99997=8877433669$

Checking:

88777 total $8+8+7+7+7=37=+10=1$
$\not \subset \not \varnothing \varnothing \varnothing 7$ total $=7$
$\therefore \quad$ LHS $=1 \times 7=7$
RHS $=88774 \not 2 \not 26669=8+8+7+7+4=34=3+4=7$
i.e. LHS $=$ RHS So, correct answer

Try These:

(i) 999995×739984 (ii) 99837×99995 (iii) 99998×77338 (iv) 98456×99993 (v) 99994×84321

Multiply bigger number close to base (numbers more than base)

Example 1: 10021×10003
Step 1: Here base is 10000 so four digits are allowed

$$
\begin{array}{ll}
10021+0021 & \text { (Surplus) } \\
\underline{10003+0003} & \text { (Surplus) }
\end{array}
$$

Step 2: Cross - addition $10021+0003=10024=10003+0021$ (both same)
$\therefore \quad$ First part of the answer may be 10024
Step 3: Multiply vertically: $10021 \times 0003=0063$ which form second part of the answer
$\therefore \quad 10021 \times 10002=100240063$

Checking:

$$
\begin{aligned}
& 10021=1+2+1+1=4 \\
& 10003=1+3=4 \\
& \therefore \quad \\
& \quad \text { LHS }=4 \times 4=16=1+6=7 \\
& \\
& \text { RHS }=1002400 \not 0 \neq 1+2+4=7 \\
& \text { As }
\end{aligned} \text { LHS = RHS So, answer is correct }
$$

Example 2: 11123×10003
Step 1: Here base is 10000 so four digits are allowed in RHS

$$
\begin{aligned}
11123+1123 & \text { (surplus) } \\
\underline{10003+0003} & \text { (surplus) }
\end{aligned}
$$

Step 2: Cross - addition: $11123+0003=11126=10003+1123$ (both equal)
$\therefore \quad$ First part of answer is 11126
Step 3: Multiply vertically: $1123 \times 0003=3369$ which form second part of answer
$\therefore \quad 11123 \times 10003=111263369$

Checking:

$$
\begin{aligned}
& 11123=1+1+1+2+3=8 \\
& 10003=1+3=4 \text { and } 4 \times 8=32=3+2=5
\end{aligned}
$$

$\therefore \quad$ LHS $=5$

$$
\text { R.H.S }=1112 \not 2 \not p \not p \nmid \alpha \not \partial=1+1+1+2=5
$$

As L.H.S = R.H.S So, answer is correct

Try These:

(i) 10004×11113 (ii) 12345×111523 (iii) 11237×10002 (iv) 100002×111523 (v) 10233×10005

Numbers near different base: (Both numbers below base)
Example 1: 98×9
Step 1: 98 Here base is 100 deficiency $=02$
$9 \quad$ Base is 10 deficiency $=1$
$\therefore \quad 98-02$ Numbers of digits permitted on R.H.S is 1 (digits in lower base)
Step 2: Cross subtraction: 98

$$
\frac{-1}{88}
$$

It is important to line the numbers as shown because 1 is not subtracted from 8 as usual but from 9 so as to get 88 as first part of answer.
Step 3: Vertical multiplication: $(-02) \times(-1)=2$ (one digits allowed)
$\therefore \quad$ Second part $=2$
$\therefore \quad 98 \times 9=882$

Checking:

(Through 9 - check method)
$\not 8=8, \not \subset=0$, LHS $=98 \times 9=8 \times 0=0$
RHS $=882=8+8+2=18=1+8=\varnothing=0$
As LHS $=$ RHS So, correct answer
Example 2: 993×97
Step 1: 993 base is 1000 and deficiency is 007
97 base is 100 and deficiency is 03
$\therefore 993-007$ (digits in lower base $=2$ So, 2 digits are permitted on
$\times 97-03$ RHS or second part of answer)
Step 2: Cross subtraction:
993
-03
963
Again line the number as shown because 03 is subtracted from 99 and not from 93 so as to get 963 which from first part of the answer.
Step 3: Vertical multiplication: $(-007)-(-03)=21$ only two digits are allowed in the second part of answer So, second part $=21$
$\therefore \quad 993 \times 97=96321$
Checking: (through 9 - check method)

$$
\not q \not \subset 3=3 \quad \not 7=7
$$

$\therefore \quad$ L.H.S. $=3 \times 7=21=2+1=3$
R.H.S. $=\not \Longrightarrow \not \boxed{2} 21=2+1=3$

As LHS =RHS so, answer is correct
Example 3:9996 base is 10000 and deficiency is 0004
988 base is 1000 and deficiency is 012
$\therefore 9996-0004$ (digits in the lower base are 3 so,3digits
$\times 988-012$ permitted on RHS or second part of answer)
Step 2: Cross - subtraction:
9996
-012
9876
Well, again take care to line the numbers while subtraction so as to get 9876 as the first part of the answer.
Step3 : Vertical multiplication: $(-0004) \times(-012)=048$
(Remember, three digits are permitted in the second part i.e. second part of answer $=048$
$\therefore \quad 9996 \times 988=9876048$
Checking:(9 - check method)
$\not \Longrightarrow \not ด \not Q 6=6, \not ด 88=8+8+=16=1+6=7$
$\therefore \quad$ LHS $=6 \times 7=42=4+2=6$
RHS $=\not 9 \not 87 \not 8045=8+7=15=1+5=6$
As, LHS =RHS so, answer is correct

When both the numbers are above base

Example 1: 105×12
Step 1: 105 base is 100 and surplus is 5
12 base is 10 and surplus is 2
$\therefore \quad 105+05$ (digits in the lower base is 1 so, 1 digit is permitted in the second part of answer) $12+2$

Step 2: Cross - addition:
105
$+2$
125 (again take care to line the numbers properly so as to get 125)
$\therefore \quad$ First part of answer may be $\underline{125}$
Step 3: Vertical multiplication : $05 \times 2=(1) 0$ but only 1 digit is permitted in the second part so 1 is shifted to first part and added to 125 so as to get 126
$\therefore \quad 105 \times 12=1260$

Checking:

$105=1+5=6,12=1+2=3$
$\therefore \quad$ LHS $=6 \times 3=18=1+8=9=0$
$\therefore \quad$ RHS $=1260=1+2+6=9=0$
Example 2: 1122×104
Step1: 1122 - base is 1000 and surplus is 122
104 - base is 100 and surplus is 4
$\therefore \quad 1122+122$
$\underline{104+04}$ (digits in lower base are 2 so, 2-digits are permitted in the second part of answer)
Step 2: Cross - addition
1122
+04 (again take care to line the nos. properly so as to get 1162)
1162
$\therefore \quad$ First part of answer may be 1162
Step 3: Vertical multiplication: $122 \times 04=4,88$
But only 2 - digits are permitted in the second part, so, 4 is shifted to first part and added to 1162 to get $1166(1162+4=1166)$
$\therefore \quad 1122 \times 104=116688$
Can be visualised as: $1122+122$
$\underline{104+04}$
$1162 / \leftarrow(4) 88=116688$

$$
+4 \text { / }
$$

Checking:

$1122=1+1+2+2+=6,104=1+4=5$
$\therefore \quad$ LHS $=6 \times 5=30=3$

$$
\text { RHS }=\not \chi \chi 66 \not \subset \not \not \not O=6+6=12=1+2=3
$$

As LHS $=$ RHS So, answer is correct
Example 3: 10007×1003
Now doing the question directly

$$
10007+0007 \text { base }=10000
$$

$$
\underline{\times 1003+003} \text { base }=1000
$$

10037 / 021 (three digits per method in this part)
$\therefore \quad 10007 \times 10003=10037021$
Checking : $10007=1+7=8,1003=1+3=4$
$\therefore \quad$ LHS $=8 \times 4=32=3+2=5$

$$
\text { RHS }=1003 \not \subset 0 \not 21=1+3+1=5
$$

As LHS = RHS so, answer is correct

Try These:

(i) 1015×103 (ii) 99888×91 (iii) 100034×102 (iv) 993×97 (v) 9988×98 (vi) 9995×96 (vii) 1005 $\times 103$ (viii) 10025×1004 (ix) 102×10013 (x) 99994×95
VINCULUM: "Vinculum" is the minus sign put on top of a number e.g. $\overline{5}, 4 \overline{1}, 6 \overline{3}$ etc. which means $(-5),(40-1),(60-3)$ respectively

Advantages of using vinculum:

(1) It gives us flexibility, we use the vinculum when it suits us .
(2) Large numbers like 6, 7, 8, 9 can be avoided.
(3) Figures tend to cancel each other or can be made to cancel.
(4) 0 and 1 occur twice as frequently as they otherwise would.

Converting from positive to negative form or from normal to vinculum form:

Sutras: All from 9 the last from 10 and one more than the previous one

$$
\begin{aligned}
& 9=1 \overline{1}(\text { i.e. } 10-1), 8=1 \overline{2}, 7=1 \overline{3}, 6=1 \overline{4}, 19=2 \overline{1}, 29=3 \overline{1} \\
& 28=3 \overline{2}, 36=4 \overline{4}(40-4), 38=4 \overline{2}
\end{aligned}
$$

Steps to convert from positive to vinculum form:

(1) Find out the digits that are to be converted i.e. 5 and above.
(2) Apply "all from 9 and last from 10 " on those digits.
(3) To end the conversions "add one to the previous digit".
(4) Repeat this as many times in the same number as necessary.

Numbers with several conversions:
$159=2 \overline{41}($ i.e. $200-41)$
$168=2 \overline{32}($ i.e. $200-32)$
$237=2 \overline{43}($ i.e. $240-7)$
$1286=13 \overline{14}($ i.e. $1300-14)$
$2387129=24 \overline{13} 13 \overline{1}$ (here, only the large digits are be changed)

From vinculum back to normal form:

Sutras: "All from 9 and last from ten" and "one less than then one before".
$1 \overline{1}=09(10-1), 1 \overline{3}=07(10-3), 2 \overline{4}=16(20-4), 2 \overline{41}=200-41=159,16 \overline{2}=160-2=158$
$2 \overline{22}=200-22=17813 \overline{14}=1300-14=1286,24 \overline{13} 131=2387129$ can be done in part as $131=130-1=129$ and $24 \overline{13}=2400-13=2387$
$\therefore \quad 24 \overline{131} 131=2387129$.

Steps to convert from vinculum to positive form:

(1) Find out the digits that are to be converted i.e. digits with a bar on top.
(2) Apply "all from 9 and the last from 10 " on those digits
(3) To end the conversion apply "one less than the previous digit"
(4) Repeat this as many times in the same number as necessary

Try These: Convert the following to their vinculum form:
(i) 91 (ii) 4427 (iii) 183 (iv) 19326 (v) 2745 (vi) 7648 (vii) 81513 (viii) 763468 (ix) 73655167 (x) 83252327

Try These: From vinculum back to normal form.
(i) $\overline{14}$ (i) $\overline{21}$ (iii) $\overline{23}$ (iv) $2 \overline{31}$ (v) $17 \overline{2}$ (vi) $14 \overline{13}$ (vii) $23 \overline{12} 13 \overline{2}$ (viii) $24 \overline{12} \overline{31}$
(ix) $6 \overline{32233} \overline{1}$ (x) $14 \overline{14} 23 \overline{23}$

When one number is above and the other below the base

Example1: 102×97
Step 1: Here, base is 100

$$
\begin{aligned}
102+02 & (02 \text { above base i.e. } 2 \text { surplus }) \\
97-03 & (03 \text { below base i.e. } 3 \text { deficiency })
\end{aligned}
$$

Step 2: Divide the answer in two parts as $102 /+02$

$$
97 /-03
$$

Step 3: Right hand side of the answer is $(+02) \times(-03)=-06=06$
Step 4: Left hand side of the answer is $102-3=99=97+02$ (same both ways)
$\therefore \quad 102 \times 97=9906=9894$ (i.e. $9900-6=9894$)
Checking: $102=1+2=3,97=7$
$\therefore \quad$ L.H.S. $=3 \times 7=21=1+2=3$
$\therefore \quad$ R.H.S $=9894=8+4=12=1+2=3$
As L.H.S. $=$ R.H.S. So, answer is correct
Example 2: 1002×997

1002
997
999

-006\end{array} \quad(006=1000-6=994\) and 1 carried from 999 to 999 reduces to 998$)$

$$
\therefore \quad 1002 \times 997=998994
$$

When base is not same:

Example1: 988×12

988	-012	base is 1000 deficiency 12
$\underline{12}$	+2	
base is 10 surplus is 2, 1 digit allowed in R.H.S.		
$=1188$	2	024
$=(2) 4$		

$\therefore \quad 988 \times 12=11864=11856$ (because $4=10-4=6$)
Checking: $\not 988=8+8=16=1+6=7,12=1+2=3$
$\therefore \quad$ LHS $=7 \times 3=21=2+1=3$
R.H.S $=11856=1+5+6=12=1+2=3$

As LHS = RHS So, answer is correct
Example 2: 1012×98

$$
\begin{array}{cl|ll}
1012 & 1012 & +012 & \begin{array}{l}
\text { (base is } 1000,12 \text { surplus (+ve sign) } \\
-02
\end{array} \\
\begin{array}{c}
98
\end{array} & -02 & \text { (base is } 100,2 \text { deficiency (-ve sign) } \\
\cline { 1 - 3 } 992 & 992 & \overline{24} & \\
{[\text { [As } 012 \times(-02)=-24 \text {] } 2 \text { digits allowed in RHS of }}
\end{array}
$$

```
Answer
\(\therefore \quad 1012 \times 98=99224=99176[\) As \(992200-24=99176]\)
Checking: \(1012=1+1+2=4,98=8\)
    LHS \(=4 \times 8=32=3+2=5\)
    RHS \(=99176=1+7+6=14=1+4=5\)
As RHS = LHS so, answer is correct
```


Try These:

(i) 1015×89 (ii) 103×97 (iii) 1005×96 (iv) 1234×92 (v) 1223×92 (vi) 1051×9 (vii) 9899×87 (viii) 9998×103 (ix) 998×96 (x) 1005×107

Sub - base method:

Till now we have all the numbers which are either less than or more than base numbers. (i.e.10, 100, 1000, 10000 etc. , now we will consider the numbers which are nearer to the multiple of $10,100,10000$ etc. i.e. $50,600,7000$ etc. these are called sub-base.

Example: 213×202
Step1: Here the sub base is 200 obtained by multiplying base 100 by 2
Step 2: R. H. S. and L.H.S. of answer is obtained using base- method.

$$
21513 \times 02=26 \quad \begin{array}{l|l}
213 & +13 \\
202 & +02
\end{array}
$$

Step 3: Multiply L.H.S. of answer by 2 to get $215 \times 2=430$
$\therefore 213 \times 202=43026$
\therefore
Example 2: 497×493
Step1: The Sub-base here is 500 obtained by multiplying base 100 by 5 .
Step2: The right hand and left hand sides of the answer are obtained by using base method.
Step3: Multiplying the left hand side of the answer by 5.

$$
\text { Same } \begin{array}{r|r}
497 & -03 \\
493 & -07 \\
\hline 497-07=490 & 21 \\
493-03=490 & \\
490 \times 5 \\
= & 2450
\end{array}
$$

$$
\therefore \quad 497 \times 493=245021
$$

Example 3: 206×197
Sub-base here is 200 so, multiply L.H.S. by 2

$$
\begin{array}{r|l}
206 & +06 \\
197 & -03 \\
\hline 206-3=203 & -18 \\
197+06=203 \times 2 & =18 \\
=406 &
\end{array}
$$

$\therefore 206 \times 197=406 \overline{18}=40582$
Example 4: 212×188
Sub - base here is 200

212	+12
188	-12
$200-12=200$	$(1) 44$
$188+12=200$	$/$
$\times 2$	

$\therefore 212 \times 188=399 \overline{44}=39856$
Checking:(11 - check method)

+ - +

$212=2+2-1=3$

+ - +

$188=1-8+8=1$
L.H.S. $=3 \times 1=3$

$$
+-+-+
$$

R.H.S. $=39856=3$

As L.H.S $=$ R.H.S. So, answer is correct.

Try these

(1) 42×43
(2) 61×63
(3) 8004×8012
(4) 397×398
(5) 583×593
(6) 7005×6998
(7) 499×502
(8) 3012×3001
(9) 3122×2997 (10) 2999×2998

Doubling and Making halves

Sometimes while doing calculations we observe that we can calculate easily by multiplying the number by 2 than the larger number (which is again a multiple of 2). This procedure in called doubling:

$$
\begin{aligned}
35 \times 4 & =35 \times 2+2 \times 35=70+70=140 \\
26 \times 8 & =26 \times 2+26 \times 2+26 \times 2+26 \times 2=52+52+52+52 \\
& =52 \times 2+52 \times 2=104 \times 2=208 \\
53 \times 4 & =53 \times 2+53 \times 2=106 \times 2=212
\end{aligned}
$$

Sometimes situation is reverse and we observe that it is easier to find half of the number than calculating 5 times or multiples of 5 . This process is called

Making halves:

4. (1) $87 \times 5=87 \times 5 \times 2 / 2=870 / 2=435$
(2) $27 \times 50=27 \times 50 \times 2 / 2=2700 / 2=1350$
(3) $82 \times 25=82 \times 25 \times 4 / 4=8200 / 4=2050$

Try These:

(1) 18×4
(2) 14×18
(3) 16×7
(4) 16×12
(5) 52×8
(6) 68×5
(7) 36×5
(8) 46×50
(9) 85×25
(10) 223×50
(11) 1235×20
(12) 256×125
(13) 85×4
(14) 102×8
(15) 521×25

Multiplication of Complimentary numbers :

Sutra: By one more than the previous one.

This special type of multiplication is for multiplying numbers whose first digits(figure) are same and whose last digits(figures)add up to 10,100 etc.

Example 1:

45×45
Step I: $5 \times 5=25$ which form R.H.S. part of answer
Step II: $4 \times$ (next consecutive number)
i.e. $4 \times 5=20$, which form L.H.S. part of answer
$\therefore \quad 45 \times 45=2025$
Example 2: $95 \times 95=9 \times 10=90 / 25 \longrightarrow\left(5^{2}\right)$

$$
\text { i.e. } 95 \times 95=9025
$$

Example 3: $42 \times 48=4 \times 5=20 / 16 \longrightarrow(8 \times 2)$
$\therefore \quad 42 \times 48=2016$
Example 4: $304 \times 306=30 \times 31=930 / 24 \longrightarrow(4 \times 6)$
$\therefore \quad 304 \times 306=93024$

Try These:

(1) 63×67
(2) 52×58
(3) 237×233
(4) 65×65
(5) 124×126
(6) 51×59
(7) 762×768
(8) 633×637
(9) 334×336
(10) 95×95

Multiplication by numbers consisting of all 9's:

Sutras: 'By one less than the previous one' and 'All from 9 and the last from 10'
When number of 9's in the multiplier is same as the number of digits in the multiplicand.
Example 1: 765 $\times 999$
Step I : The number being multiplied by 9's is first reduced by 1
i.e. $765-1=764$ This is first part of the answer

Step II : "All from 9 and the last from 10 " is applied to 765 to get 235 , which is the second part of the answer.

$$
\therefore 765 \times 999=764235
$$

When 9's in the multiplier are more than multiplicand

Example II : 1863×99999
Step I : Here 1863 has 4 digits and 99999 have 5-digits, we suppose 1863 to be as 01863 . Reduce this by one to get 1862 which form the first part of answer.

Step II: Apply 'All from 9 and last from 10' to 01863 gives 98137 which form the last part of answer
$\therefore \quad 1863 \times 99999=186298137$

When 9's in the multiplier are less than multiplicand

Example 3:537x99
Step I: Mark off two figures on the right of 537 as $5 / 37$, one more than the L.H.S. of it i.e. $(5+1)$ is to be subtracted from the whole number, $537-6=531$ this forms first part of the answer
Step II: Now applying "all from 9 last from 10 " to R.H.S. part of $5 / 37$ to get $63(100-37=63)$

$$
\therefore \quad 537 \times 99=53163
$$

Try these

(1) 254×999
(2) 7654×9999
(3) 879×99
(4) 898×9999
(5) 423×9999
(6) 876×99
(7) 1768×999
(8) 4263×9999
(9) 30421×999
(10) 123×99999

Multiplication by 11

Example 1: 23×11
Step 1 : Write the digit on L.H.S. of the number first. Here the number is 23 so, 2 is written first.
Step 2:Add the two digits of the given number and write it in between. Here $2+3=5$
Step 3 : Now write the second digit on extreme right. Here the digit is 3 . So, $23 \times 11=253$

OR

$23 \times 11=2 / 2+3 / 3=253$
(Here base is 10 so only 2 digits can be added at a time)
Example 2: 243×11
Step 1: Mark the first, second and last digit of given number
First digit $=2$, second digit $=4$, last digit $=3$
Now first and last digits of the number 243 form the first and last digits of the answer.
Step 2: For second digit (from left) add first two digits of the number i.e. $2+4=6$
Step 3: For third digit add second and last digits of the number i.e. $3+4=7$
So, $243 \times 11=2673$

OR

$243 \times 11=2 / 2+4 / 4+3 / 3=2673$
Similarly we can multiply any bigger number by 11 easily.
Example 3: 42431×11
$42431 \times 11=4 / 4+2 / 2+4 / 4+3 / 3+1 / 1=466741$

If we have to multiply the given number by 111

Example 1: 189×111
Step 1: Mark the first, second and last digit of given number
First digit $=1$, second digit $=8$, last digit $=9$
Now first and last digits of the number 189 may form the first and last digits of the answer
Step 2: For second digit (from left) add first two digits of the number i.e. $1+8=9$
Step 3: For third digit add first, second and last digits of the number to get $1+8+9=18$ (multiplying by 111 , so three digits are added at a time)

Step 4: For fourth digit from left add second and last digit to get, $8+9=17$
As we cannot have two digits at one place so 1 is shifted and added to the next digit so as to get 189 $\times 111=20979$

OR

$\therefore 189 \times 111=20979$
Example 2: 2891×111

$2891 \times 111=320901$

Try These:

(1) 107×11
(2) 15×11
(3) 16×111
(4) 112×111
(5) 72×11
(6) 69×111
(7) 12345×11
(8) 2345×111
(9) 272×11
(10) 6231×111.

Note: This method can be extended to number of any size and to multiplying by 1111, 11111 etc. This multiplication is useful in percentage also. If we want to increase a member by 10% we multiply it by 1.1

General Method of Multiplication.

Sutra: Vertically and cross-wise.

Till now we have learned various methods of multiplication but these are all special cases, wherenumbers should satisfy certain conditions like near base, or sub base, complimentary to each other etc. Now we are going to learn about a general method of multiplication, by which we can multiply any two numbers in a line. Vertically and cross-wise sutra can be used for multiplying any number.
For different figure numbers the sutra works as follows:

Two digit - multiplication

Example: Multiply 21 and 23
Step1: Vertical (one at a time)

Step2: Cross -wise (two at a time)

$$
\begin{aligned}
(2 \times 3+2 \times 1) & =8 \\
& 8 / 3 \\
\hline & 8 / 3
\end{aligned}
$$

Step3: Vertical (one at a time)
[2] 1
[2] 3
$2 \times 2=4$

$$
4 / 8 / 3
$$

$\therefore 21 \times 23=483$
Multiplication with carry:
Example: Multiply 42 and 26
Step1: Vertical
42

$$
2 \times 6=12
$$

Step2: Cross-wise

$$
\begin{aligned}
& 4 \times 6+2 \times 2 \\
& 24+4=28
\end{aligned}
$$

Step3: Vertical

$\therefore \quad 42 \times 26=1092$

Three digit multiplication:
Example: 212×112

Step: Vertical (one at a time)
212
112

$$
\begin{gathered}
2 \times 2 \\
=4
\end{gathered}
$$

Step: Cross-wise (two at a time)

$$
\begin{aligned}
& 2 \times 1+2 \times 1 \\
& =2+2=4
\end{aligned}
$$

Step: Vertical and cross-wise (three at a time)

$$
2 \times 2+2 \times 1+1 \times 1=4+2+1=7
$$

Step: cross wise
(Two at a time)

$$
\begin{aligned}
& { }_{2}^{2} \chi_{12}^{12} \begin{array}{l}
2 \times 1+1 \times 1 \\
2+1=3
\end{array} \\
& \underline{1}{ }_{2}=1
\end{aligned}
$$

Step 5: vertical (one at a time) $\left\lvert\, \begin{array}{lll}2 & 12 & 2 \times 1=2 \\ \underline{112} & \end{array}\right.$

$\therefore \quad 212 \times 112=23744$
Three digits Multiplication with carry:
Example: 816×223

$\therefore \quad 816 \times 223=181968$
Checking by 11 - check method

+ - $\quad-+$
$816=14-1=13=3-1=2$
+ - +

$223=3$
\therefore L.H.S. $=3 \times 2=6$

- + - + - +

$181968 \quad=17=7-1=6$
As L.H.S. $=$ R.H.S.
$\therefore \quad$ Answer is correct
Try These:
(1) 342×514
(2) 1412×4235
(3) 321×53
(4) 2121×2112
(5) 302×415
(6) 1312×3112
(7) 5123×5012
(8) 20354×131
(9) 7232×125
(10) 3434×4321

Number Split Method

As you have earlier used this method for addition and subtraction, the same may be done for multiplication also.

For example :

Note: The split allows us to add $36+24$ and $42+39$ both of which can be done mentally

Multiplication of algebraic expressions:

Sutra: Vertically and cross-wise
Example1: $(x+3)(x+4)$

Example2: $(2 x+5)(3 x+2)$

Example3: $\left(x^{2}+2 x+5\right)\left(x^{2}-3 x+1\right)$

Try These:

(1) $(2 x-1)(3 x+2)$
(2) $(2 x+1)\left(x^{2}+3 x-5\right)$
(3) $(5 x+5)(7 x-6)$
(4) $(x+5)\left(x^{2}-2 x+3\right)$
(5) $(x-4)\left(x^{2}+2 x+3\right)$
(6) $\left(x^{2}+4 x-5\right)(x+5)$
(7) $\left(x^{3}-5\right)\left(x^{2}+3\right)$
(8) $\left(x^{2}-2 x+8\right)\left(x^{4}-2\right)$
(9) $\left(x^{2}-7 x+4\right)\left(x^{3}-1\right)$
(10) $\left(x^{3}-5 x^{2}+2\right)\left(x^{2}+1\right)$

