Chapter 5 || Squaring and square Roots

Square of numbers ending in 5 :

Sutra: 'By one more than previous one"
Example: 75×75 or 75^{2}
As explained earlier in the chapter of multiplication we simply multiply 7 by the next number i.e. 8 to get 56 which forms first part of answer and the last part is simply $25=(5)^{2}$. So, $75 \times 75=5625$
This method is applicable to numbers of any size.
Example: 605 ${ }^{2}$
$60 \times 61=3660$ and $5^{2}=25$
$\therefore 605^{2}=366025$
Square of numbers with decimals ending in 5
Example : (7.5) ${ }^{2}$
$7 \times 8=56,\left(0.5^{2}\right)=0.25$
$(7.5)^{2}=56.25$ (Similar to above example but with decimal)
Squaring numbers above 50 :
Example: 52 ${ }^{2}$
Step1: First part is calculated as $5^{2}+2=25+2=27$
Step2: Last part is calculated as $(2)^{2}=04$ (two digits)
$\therefore 52^{2}=2704$

Squaring numbers below 50

Example : 48^{2}
Step1: First part of answer calculated as: $5^{2}-2=25-2=23$
Step2: second part is calculated as : $2^{2}=04$
$\therefore \quad 48^{2}=2304$

Squaring numbers near base :

Example : 1004²
Step1: For first part add 1004and 04 to get 1008
Step2: For second part $4^{2}=16=016$ (as,base is 1000 a three digit no.)
$\therefore \quad(1004)^{2}=1008016$

Squaring numbers near sub - base:

Example (302) ${ }^{2}$
Step1: For first part $=3(302+02)=3 \times 304=912$ [Here sub - base is 300 so multiply by 3]
Step2: For second part $=2^{2}=04$
$\therefore \quad(302)^{2}=91204$

General method of squaring:

The Duplex

Sutra: "Single digit square, pair multiply and double" we will use the term duplex, ' D' as follows:
For 1 figure(or digit) Duplex is its squaree.g. $\mathrm{D}(4)=4^{2}=16$
For2 digitsDuplex is twice of the product e.g. $D(34)=2(3 \times 4)=24$
For 3 digit number: e.g. (341) ${ }^{2}$
$\mathrm{D}(3)=3^{2}=9$
D $(34)=2(3 \times 4)=24$
D $(341)=2(3 \times 1)+4^{2}=6+16=22$

D $(41)=2(4 \times 1)=8$
D (1) $=1^{2}=1$
$\therefore \quad(341)^{2}=116281$

$=116281$

Algebraic Squaring :

Above method is applicable for squaring algebraic expressions:
Example: $(x+5)^{2}$
$\mathrm{D}(x)=x^{2}$
$\mathrm{D}(x+5)=2(x \times 5)=10 x$
D (5) $=5^{2}=25$
$\therefore \quad(x+5)^{2}=x^{2}+10 x+25$
Example: $(x-3 y)^{2}$
$\mathrm{D}(x)=x^{2}$
$\mathrm{D}(x-3 y)=2(x) \times-3 y)=-6 x y$
$\mathrm{D}(-3 y)=(-3 y)^{2}=9 y^{2}$
$\therefore \quad(x-3 y)^{2}=x^{2}-6 x y+9 y^{2}$

Try these:

(I) 85^{2}
(V) 58^{2}
(II) $\quad\left(8_{2}{ }^{1}\right)^{2}$
(III) $(10.5)^{2}$
(IV) 8050^{2}
(IX) 98^{2}
(VI) 52^{2}
(VII) 42^{2}
(VIII) 46^{2}
(XIII) $(\mathrm{y}-3)^{2} \quad$ (XIV) $(2 x-3)^{2} \quad$ (XV) $(3 y-5)^{2}$
(X) $\quad 106^{2}$
(XI) 118^{2}
(XII) $(x+2)^{2}$

SQUARE ROOTS:

General method:

As $1^{2}=12^{2}=43^{2}=94^{2}=1[6] 5^{2}=2[5] 6^{2}=3[6]$
$7^{2}=4[9] 8^{2}=6[4] 9^{2}=8[1]$ i.e. square numbers only have digits $1,4,5,6,9,0$ at the units place (or at the end)

Also in 16, digit sum $=1+6=7,25=2+5=7,36=3+6=9,49=4+9=13$
$13=1+3=4,64=6+4=10=1+0=1,81=8+1=9$ i.e. square number only have digit sums of $1,4,7$ and 9 .

This means that square numbers cannot have certain digit sums and they cannot end with certain figures (or digits) using above information which of the following are not square numbers:
(1) 4539
(2) 6889
(3) 104976
(4) 27478
(5) 12345

Note: If a number has a valid digit sum and a valid last figure that does not mean that it is a square number. If 75379 is not a perfect square in spite of the fact that its digit sum is 4 and last figure is 9 .

Square Root of Perfect Squares:

Example1: $\sqrt{ } 5184$
Step 1: Pair the numbers from right to left 5184 two pairs
Therefore answer is 2 digit numbers
$7^{2}=49$ and $8^{2}=64$
49 is less than 51
Therefore first digit of square root is 7 .
Look at last digit which is 4
As $2^{2}=4$ and $8^{2}=64$ both end with 4
Therefore the answer could be 72 or 78
As we know $75^{2}=5625$ greater than 5184
Therefore $\sqrt{ } 5184$ is below 75
Therefore $\sqrt{ } 5184=72$
Example 2: $\sqrt{ } 9216$
Step 1: Pair the numbers from right to left $\underline{9216}$ two pairs
Therefore answer is 2 digit numbers
$9^{2}=81$ and $10^{2}=100$
81 is less than 92
Therefore first digit of square root is 9 .
Look at last digit which is 6
As $4^{2}=16$ and $6^{2}=36$ both end with 6
Therefore the answer could be 94 or 96

As we know $95^{2}=9025$ less than 9216
Therefore $\sqrt{ } 9216$ is above 95
Therefore $\sqrt{ } 9216=96$

General method

Example 1: ل 2809
Step1: Form the pairs from right to left which decide the number of digits in the square root. Here 2 pairs therefore 2 -digits in thesquare root
Step 2: Now $\sqrt{ } 28$, nearest squares is $=25$
So first digit is 5 (from left)
Step3: As $28-25=3$ is reminder which forms 30 with the next digit 0 .
Step 4: Multiply 2 with 5 to get 10 which is divisor $10 \sqrt{ } \underline{2809}$
30
Now $3 \times 10=30 \underline{30}=Q \quad R$
1030
Step 5: As $3^{2}=9$ and $9-9$ (last digit of the number) $=0$
$\therefore \quad 2809$ is a perfect square and $\sqrt{ } 2809=53$
Example 2:3249
Step1: Form the pairs form right to left which decided the number of digits in the square root. Here 2 pairs therefore 2 digits in the square root.
Step2: Now $32>25=5^{2}$ so the first digit in 5 (from left)
Step 3: $32-25=7$ is remainder which form 74 with the next digit 4

Step 4: Multiply 2 with 5 to get 10 which is divisor $10 \sqrt{3249}$
Now $74=\mathrm{Q} R$ 74

1074
Step5: $7^{2}=49$ and $49-49=0$ (remainder is 4 which together with9 form49)
$\therefore \quad 3249$ is a perfect square and $\sqrt{ } 3249=57$
Example 3: $\sqrt{54756}$
Step1: Form the pairs from right to left therefore the square root of 54756 has 3-digits.
Step2: $5>4=2^{2}$ i.e. nearest square is $2^{2}=4$
So first digit is 2 (from left)
Step3: As 5-4=1 is remainder which form 14 with the next digit 4 .

Step4: Multiply 2 with 2 to get 4, which is divisor
2
$4 \underline{5}_{1} \underline{4}_{2} \underline{756} \quad$ Now $\underline{14}=$ Q R
432
Step 5: Start with remainder and next digit, we get 27.
Find $27-3^{2}=27-9=18$ [square of quotient]
234
Step 6: $\underline{18}=$ Q R $4 \underline{5}_{1} \underline{4}_{2} \underline{7}_{\underline{2}} \underline{5}_{1} \underline{6}$
442
Now $25-(3 \times 4 \times 2)=25-24=1$
$\underline{1}=\mathrm{Q} \mathrm{R}$
401
$16-4^{2}=16-16=0$
$\therefore 54756$ is a perfect square and so $\sqrt{ } 54756=234$

Try These:

1. 2116
2. 784
3. 6724
4. 4489
5. 9604
6. 3249
7. 34856
8. 1444
9. 103041
10. 97344
