(www.tiwariacademy.com)

(Chapter - 2) (Inverse Trigonometric Functions)
(Class 12)

Exercise 2.1

Question 1:

Find the principal value of $sin^{-1}\left(-\frac{1}{2}\right)$

Answer 1:

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
, then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and

$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

Therefore, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Question 2:

Find the principal value of $cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer 2:

Let
$$cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
, then $cos y = \frac{\sqrt{3}}{2} = cos\left(\frac{\pi}{6}\right)$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$ and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

Therefore, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Question 3:

Find the principal value of $\csc^{-1}(2)$.

Answer 3:

Let
$$\operatorname{cosec}^{-1}(2) = y$$
. then, $\operatorname{cosec} y = 2 = \operatorname{cosec}\left(\frac{\pi}{6}\right)$

We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ and $\operatorname{cosec}\left(\frac{\pi}{6}\right) = 2$.

Therefore, the principal value of $\csc^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $tan^{-1}(-\sqrt{3})$.

Answer 4:

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
, then $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right)$

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{2}\right) = -\sqrt{3}$

Therefore, the principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.

www.tiwariacademy.com

A Free web support in education

(www.tiwariacademy.com)

(Chapter - 2) (Inverse Trigonometric Functions)
(Class 12)

Question 5:

Find the principal value of $cos^{-1}\left(-\frac{1}{2}\right)$.

East Answer 5:

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
, then $\cos y = -\frac{1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$ and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6:

Find the principal value of tan^{-1} (-1).

Answer 6:

Let
$$\tan^{-1}(-1) = y$$
. Then, $\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$

Therefore, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7:

Find the principal value of $sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

Answer 7:

Let
$$sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
, then $sec y = \frac{2}{\sqrt{3}} = sec\left(\frac{\pi}{6}\right)$

We know that the range of the principal value branch of \sec^{-1} is $\left[0, \pi\right] - \left\{\frac{\pi}{2}\right\}$ and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.

Therefore, the principal value of $sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8:

Find the principal value of $\cot^{-1}\sqrt{3}$.

Answer 8:

Let
$$\cot^{-1}\sqrt{3} = y$$
, then $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cot^{-1} is $(0, \pi)$ and $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$.

Therefore, the principal value of $\cot^{-1}\sqrt{3}$ is $\frac{\pi}{6}$.

(www.tiwariacademy.com)

(Chapter - 2) (Inverse Trigonometric Functions)
(Class 12)

Question 9:

Find the principal value of $cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

Answer 9:

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
, then $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$ and $\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

Question 10:

Find the principal value of $cosec^{-1}(-\sqrt{2})$.

Answer 10:

Let
$$cosec^{-1}(-\sqrt{2}) = y$$
, then $cosec\ y = -\sqrt{2} = -cosec\left(\frac{\pi}{4}\right) = cosec\left(-\frac{\pi}{4}\right)$

We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.

Therefore, the principal value of $\csc^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Question 11:

Find the value of
$$tan^{-1}(1) + cos^{-1}(-\frac{1}{2}) + sin^{-1}(-\frac{1}{2})$$
.

Answer 11:

Let
$$tan^{-1}(1) = x$$
, then $tan x = 1 = tan \frac{\pi}{4}$

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore tan^{-1}(1) = \frac{\pi}{4}$$

Let
$$cos^{-1}\left(-\frac{1}{2}\right) = y$$
, then

$$\cos y = -\frac{1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$.

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Let
$$sin^{-1}\left(-\frac{1}{2}\right) = z$$
, then

$$\sin z = -\frac{1}{2} = -\sin\frac{\pi}{6} = \sin\left(-\frac{\pi}{6}\right)$$

www.tiwariacademy.com

A Free web support in education

(www.tiwariacademy.com)

(Chapter - 2) (Inverse Trigonometric Functions) (Class 12)

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

Now.

$$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$
$$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6} = \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$$

Question 12:

Find the value of $cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)$

Answer 12:

Let $\cos^{-1}\left(\frac{1}{2}\right) = x$, then

$$\cos x = \frac{1}{2} = \cos \frac{\pi}{3}$$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$.

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let $\sin^{-1}\left(-\frac{1}{2}\right) = y$, then

$$\sin y = \frac{1}{2} = \sin \frac{\pi}{6}$$

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

Now.

$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + 2 \times \frac{\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}.$$

Question 13:

If $\sin^{-1} x = v$, then

$$(A) \ 0 \le y \le \pi$$

(C)
$$0 < y < \pi$$

$$(B) - \frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(B)
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer 13:

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Hence, the option (B) is correct.

(www.tiwariacademy.com)

(Chapter - 2) (Inverse Trigonometric Functions) (Class 12)

Question 14:

 $tan^{-1}\sqrt{3} - sec^{-1}(-2)$ is equal to

$$(A) \pi$$

(B)
$$-\frac{\pi}{3}$$

$$(C)\frac{\pi}{3}$$

(D)
$$\frac{2\pi}{3}$$

Answer 14:

Let $tan^{-1}\sqrt{3} = x$, then

$$\tan x = \sqrt{3} = \tan \frac{\pi}{3}$$

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1}\sqrt{3} = \frac{\pi}{3}$$

Let $\sec^{-1}(-2) = y$, then

$$\sec y = -2 = -\sec \frac{\pi}{3} = \sec \left(\pi - \frac{\pi}{3}\right) = \sec \left(\frac{2\pi}{3}\right)$$

We know that the range of the principal value branch of sec⁻¹ is $[0, \pi]$ - $\{\frac{\pi}{2}\}$

$$\therefore \sec^{-1}(-2) = \frac{2\pi}{3}$$

Now,

$$\tan^{-1}\sqrt{3}\cdot\sec^{-1}(-2)=\frac{\pi}{3}\cdot\frac{2\pi}{3}=-\frac{\pi}{3}$$

Hence, the option (B) is correct.