(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Exercise 5.1

Question 1:

Prove that the function f(x) = 5x - 3 is continuous at x = 0, at x = -3 and at x = 5.

Answer 1:

Given function f(x) = 5x - 3

At
$$x = 0$$
, $f(0) = 5(0) - 3 = -3$

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (5x - 3) = -3$$

RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (5x - 3) = -3$$

Here, at
$$x = 0$$
, LHL = RHL = $f(0) = -3$

Hence, the function f is continuous at x = 0.

At
$$x = -3$$
, $f(-3) = 5(-3) - 3 = -18$

LHL =
$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{-}} (5x - 3) = -18$$

RHL =
$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (5x - 3) = -18$$

Here, at
$$x = -3$$
, LHL = RHL = $f(-3) = -18$

Hence, the function f is continuous at x = -3.

At
$$x = 5$$
, $f(5) = 5(5) - 3 = 22$

LHL =
$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (5x - 3) = 22$$

RHL =
$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} (5x - 3) = 22$$

Here, at
$$x = 5$$
, LHL = RHL = $f(5) = 22$

Hence, the function f is continuous at x = 5.

Question 2:

Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3.

Answer 2:

Given function
$$f(x) = 2x^2 - 1$$
. At $x = 3$, $f(3) = 2(3)^2 - 1 = 17$

LHL =
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (2x^{2} - 1) = 17$$

RHL =
$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (2x^2 - 1) = 17$$

Here, at
$$x = 3$$
, LHL = RHL = $f(3) = 17$

Hence, the function f is continuous at x = 3.

Question 3:

Examine the following functions for continuity:

(a)
$$f(x) = x - 5$$

(b)
$$f(x) = \frac{1}{x-5}, x \neq 5$$

(c)
$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$$

(d)
$$f(x) = |x - 5|$$

Answer 3:

(a) Given function
$$f(x) = x - 5$$

Let, k be any real number. At
$$x = k$$
, $f(k) = k - 5$

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} (x - 5) = k - 5$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (x - 5) = k - 5$$

At,
$$x = k$$
, LHL = RHL = $f(k) = k - 5$

Hence, the function f is continuous for all real numbers.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

(b) Given function
$$f(x) = \frac{1}{x-5}, x \neq 5$$

Let,
$$k \ (k \neq 5)$$
 be any real number. At $x = k$, $f(k) = \frac{1}{k-5}$

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} \left(\frac{1}{x-5} \right) = \frac{1}{k-5}$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{1}{x - 5}\right) = \frac{1}{k - 5}$$

At, $x = k$, LHL = RHL = $f(k) = \frac{1}{k - 5}$

At,
$$x = k$$
, LHL = RHL = $f(k) = \frac{1}{k-5}$

Hence, the function f is continuous for all real numbers (except 5).

(c) Given function
$$f(x) = \frac{x^2 - 25}{x + 5}$$
, $x \neq -5$

At
$$x = k$$
, $f(k) = \frac{k^2 - 25}{k + 5} = \frac{(k + 5)(k - 5)}{(k + 5)} = (k + 5)$

Let,
$$k \ (k \neq -5)$$
 be any real number.
At $x = k$, $f(k) = \frac{k^2 - 25}{k + 5} = \frac{(k + 5)(k - 5)}{(k + 5)} = (k + 5)$
LHL = $\lim_{x \to k^-} f(x) = \lim_{x \to k^-} \left(\frac{x^2 - 25}{x + 5}\right) = \lim_{x \to k^-} \left(\frac{(k + 5)(k - 5)}{(k + 5)}\right) = k + 5$
RHL = $\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{x^2 - 25}{x + 5}\right) = \lim_{x \to k^+} \left(\frac{(k + 5)(k - 5)}{(k + 5)}\right) = k + 5$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{x^2 - 25}{x + 5} \right) = \lim_{x \to k^+} \left(\frac{(k+5)(k-5)}{(k+5)} \right) = k + 5$$

At,
$$x = k$$
, LHL = RHL = $f(k) = k + 5$

Hence, the function f is continuous for all real numbers (except – 5).

(d) Given function
$$f(x) = |x - 5| = \begin{cases} 5 - x, & x < 5 \\ x - 5, & x \ge 5 \end{cases}$$

Let, k be any real number. According to question, k < 5 or k = 5 or k > 5.

First case: If, k < 5,

$$f(k) = 5 - k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (5 - x) = 5 - k$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 5.

Second case: If, k = 5,

$$f(k) = k - 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$, Here, $\lim_{x \to k} f(x) = f(k)$
Hence, the function f is continuous at $x = 5$.

Hence, the function f is continuous at x = 5.

Third case: If, k > 5,

$$f(k) = k - 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 5.

Hence, the function f is continuous for all real numbers.

Question 4:

Prove that the function $f(x) = x^n$, is continuous at x = n, where n is a positive integer.

Answer 4:

Given function $f(x) = x^n$.

At
$$x = n$$
, $f(n) = n^n$

$$\lim_{x \to n} f(x) = \lim_{x \to n} (x^n) = n^n$$

At
$$x = n$$
, $f(n) = n^n$

$$\lim_{x \to n} f(x) = \lim_{x \to n} (x^n) = n^n$$
Here, at $x = n$, $\lim_{x \to n} f(x) = f(n) = n^n$
Hence the function f is continuous at $x = n$ where n is

Hence, the function f is continuous at x = n, where n is positive integer.

Question 5:

Is the function f defined by $f(x) = \begin{cases} x, & x \le 1 \\ 5, & x > 1 \end{cases}$ continuous at x = 0? At x = 1? At x = 2?

www.tiwariacademy.com

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Answer 5:

Given function
$$f(x) = \begin{cases} x, & x \le 1 \\ 5, & x > 1 \end{cases}$$

At
$$x = 0$$
, $f(0) = 0$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x) = 0$$

Here,
$$x = 0$$
, $\lim_{x \to 0} f(x) = f(0) = 0$

Hence, the function f is discontinuous at x = 0.

At
$$x = 1$$
, $f(1) = 1$

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x) = 1$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (5) = 5$$

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

At
$$x = 2$$
, $f(2) = 5$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (5) = 5$$

Here, at
$$x = 2$$
, $\lim_{x \to 2} f(x) = f(2) = 5$

 $\lim_{x\to 2}f(x)=\lim_{x\to 2}(5)=5$ Here, at x=2, $\lim_{x\to 2}f(x)=f(2)=5$ Hence, the function f is continuous at x=2.

Find all points of discontinuity of f, where f is defined by

Question 6:

$$f(x) = \begin{cases} 2x+3, & \text{If } x \le 2\\ 2x-3, & \text{If } x > 2 \end{cases}$$

Answer 6:

Let, k be any real number. According to question, k < 2 or k = 2 or k > 2First case: यदि, k < 2,

$$f(k) = 2k + 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x + 3) = 2k + 3$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers smaller than 2.

Second case: If,
$$k = 2$$
, $f(2) = 2k + 3$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x + 3) = 7$$

RHL =
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x - 3) = 1$$

Here, at x = 2, LHL \neq RHL. Hence, the function f is discontinuous at x = 2.

Third case: If, k > 2,

$$f(k) = 2k - 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x - 3) = 2k - 3$, Here, $\lim_{x \to k} f(x) = f(k)$
Therefore, the function f is continuous for all real numbers greater than 2.

Hence, the function f is discontinuous only at x = 2.

Question 7:

$$f(x) = \begin{cases} |x| + 3, & \text{If } x \le -3\\ -2x, & \text{If } -3 < x < 3\\ 6x + 2, & \text{If } x > 3 \end{cases}$$

Answer 7:

Let, k be any real number. According to question, k < -3 or k = -3 or -3 < k < 3 or k = 3 or k > 3

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

First case: If, k < -3,

$$f(k) = -k + 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-x + 3) = -k + 3$. Here, $\lim_{x \to k} f(x) = f(k)$. Hence, the function f is continuous for all real numbers less than -3 .

Second case: If,
$$k = -3$$
, $f(-3) = -(-3) + 3 = 6$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (-x + 3) = -(-3) + 3 = 6$$

Second case: If,
$$k = -3$$
, $f(-3) = -(-3) + 3 = 6$
LHL = $\lim_{x \to -3^-} f(x) = \lim_{x \to -3^-} (-x + 3) = -(-3) + 3 = 6$
RHL = $\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (-2x) = -2(-3) = 6$. Here, $\lim_{x \to k} f(x) = f(k)$
Hence the function f is continuous at $x = -3$

Hence, the function f is continuous at x = -3.

Third case: If, -3 < k < 3,

$$f(k) = -2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-2x) = -2k$. Here, $\lim_{x \to k} f(x) = f(k)$. Hence, the function f is continuous at $-3 < x < 3$.

Fourth case: If k = 3,

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} (-2x) = -2k$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (6x + 2) = 6k + 2$$

LHL = $\lim_{x \to k^-} f(x) = \lim_{x \to k^-} (-2x) = -2k$ RHL = $\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (6x + 2) = 6k + 2$, Here, at x = 3, LHL \neq RHL. Hence, the function f is discontinuous at x = 3.

Fifth case: If, k > 3,

$$f(k) = 6k + 2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (6x + 2) = 6k + 2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all numbers greater than 3.

Hence, the function f is discontinuous only at x = 3.

Question 8:

$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{If } x \neq 0 \\ 0, & \text{If } x = 0 \end{cases}$$

Answer 8:

After redefining the function f, we get

$$f(x) = \begin{cases} -\frac{x}{x} = -1, & \text{If } x < 0 \\ 0, & \text{If } x = 0 \\ \frac{x}{x} = 1, & \text{If } x > 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0. First case: If, k < 0,

$$f(k) = -\frac{k}{k} = -1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(-\frac{x}{x} \right) = -1$. Here, $\lim_{x \to k} f(x) = f(k)$ Hence, the function f is continuous for all real numbers smaller than 0.

Second case: If, k = 0, f(0) = 0

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} \left(-\frac{x}{x} \right) = -1$$
 and RHL = $\lim_{x \to k^{+}} f(x) = \lim_{x \to k^{+}} \left(\frac{x}{x} \right) = 1$,

Here, at x = 0, LHL \neq RHL. Hence, the function f is discontinuous at x = 0

Third case: If, k > 0,

$$f(k) = \frac{k}{k} = 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{x}{x}\right) = 1$. Here, $\lim_{x \to k} f(x) = f(k)$ Hence, the function f is continuous for all real numbers greater than 0.

Therefore, the function f is discontinuous only at x = 0.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Question 9:

$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{If } x < 0\\ -1, & \text{If } x \ge 0 \end{cases}$$

Answer 9:

Redefining the function, we get

$$f(x) = \begin{cases} \frac{x}{|x|} = \frac{x}{-x} = -1, & \text{If } x < 0 \\ -1, & \text{If } x \ge 0 \end{cases}$$

Here, $\lim f(x) = f(k) = -1$, where k is a real number.

Hence, the function f is continuous for all real numbers.

Question 10:

$$f(x) = \begin{cases} x + 1, & \text{If } \ge 1\\ x^2 + 1, & \text{If } x < 1 \end{cases}$$

Answer 10:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1First case: If, k < 1,

$$f(k) = k^2 + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers smaller than 1.

Second case: If,
$$k = 1$$
, $f(1) = 1 + 1 = 2$

Second case: If,
$$k = 1$$
, $f(1) = 1 + 1 = 2$
LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 + 1) = 1 + 1 = 2$
RHL = $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 1) = 1 + 1 = 2$.

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1) = 1+1=2$$
,

Here, at x = 1, LHL = RHL = f(1). Hence, the function f is continuous at x = 1.

Third case: If, k > 1,

Third case: If,
$$k > 1$$
, $f(k) = k + 1$ and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 1.

Therefore, the function f is continuous for all real numbers.

Question 11:

$$f(x) = \begin{cases} x^3 - 3, & \text{If } x \le 2\\ x^2 + 1, & \text{If } x > 2 \end{cases}$$

Answer 11:

Let, k be any real number. According to question, k < 2 or k = 2 or k > 2First case: If, k < 2,

$$f(k) = k^3 - 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^3 - 3) = k^3 - 3$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 2.

Second case: If,
$$k = 2$$
, $f(2) = 2^3 - 3 = 5$

LHL =
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^3 - 3) = 2^3 - 3 = 5$$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^{3} - 3) = 2^{3} - 3 = 5$$

RHL = $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} + 1) = 2^{2} + 1 = 5,$

Here, at
$$x = 2$$
, LHL = RHL = $f(2)$

Hence, the function f is continuous at x = 2.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Third case: If, k > 2,

$$f(k) = k^2 + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for real numbers greater than 2.

Hence, the function f is continuous for all real numbers.

Ouestion 12:

Question 12:

$$f(x) = \begin{cases} x^{10} - 1, & \text{If } x \le 1 \\ x^2, & \text{If } x > 1 \end{cases}$$

Answer 12:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1First case: If, k < 1,

$$f(k) = k^{10} - 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^{10} - 1) = k^{10} - 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 1.

Second case: If,
$$k = 1$$
, $f(1) = 1^{10} - 1 = 0$

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{10} - 1) = 0$$

RHL = $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{2}) = 1$,

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2) = 1$$

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If, k > 1,

$$f(k) = k^2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2) = k^2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real values greater than 1.

Hence, the function f is discontinuous only at x = 1.

Question 13:

Is the function defined by $f(x) = \begin{cases} x+5, & \text{if } x \leq 1 \\ x-5, & \text{if } x > 1 \end{cases}$ a continuous function?

Answer 13:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1First case: If, k < 1,

$$f(k) = k + 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 5) = k + 5$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 1.

Second case: If, k = 1, f(1) = 1 + 5 = 6

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 5) = 6$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 5) = -4$$
,

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If, k > 1,

$$f(k) = k - 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$.

Here,
$$\lim_{x \to \infty} f(x) = f(k)$$

Hence, the function f is continuous for all real numbers greater than 1.

Hence, the function f is discontinuous only at x = 1.

Discuss the continuity of the function *f*, where *f* is defined by:

www.tiwariacademy.com

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Question 14:

$$f(x) = \begin{cases} 3, & \text{If } 0 \le x \le 1\\ 4, & \text{If } 1 < x < 3\\ 5, & \text{If } 3 \le x \le 10 \end{cases}$$

Answer 14:

Let, k be any real number. According to question,

 $0 \le k \le 1$ or k = 1 or 1 < k < 3 or k = 3 or $3 \le k \le 10$

First case: If, $0 \le k \le 1$,

$$f(k) = 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (3) = 3$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $0 \le x \le 1$.

Second case: If, k = 1, f(1) = 3

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3) = 3$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4) = 4$$
,

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If, 1 < k < 3,

$$f(k) = 4$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (4) = 4$. Here, $\lim_{x \to k} f(x) = f(k)$ Hence, the function f is continuous for $1 < x < 3$.

Fourth case: If k = 3,

LHL =
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (4) = 4$$
 and RHL = $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (5) = 5$,

Here, at x = 3, LHL \neq RHL. Hence, the function f is discontinuous at x = 3.

Fifth case: If, $3 \le k \le 10$,

$$f(k) = 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (5) = 5$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $3 \le x \le 10$.

Hence, the function f is discontinuous only at x = 1 and x = 3.

Question 15:

$$f(x) = \begin{cases} 2x, & \text{If } x < 0\\ 0, & \text{If } 0 \le x \le 1\\ 4x, & \text{If } x > 1 \end{cases}$$

Answer 15:

Let, k be any real number. According to question,

 $k < 0 \text{ or } k = 0 \text{ or } 0 \le k \le 1 \text{ or } k = 1 \text{ or } k > 1$

First case: If, k < 0,

$$f(k) = 2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 0.

Second case: If, k = 0, f(0) = 0

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (2x) = 0$$

RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (0) = 0$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 0.

Third case: If, $0 \le k \le 1$,

$$f(k) = 0$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (0) = 0$. Here, $\lim_{x \to k} f(x) = f(k)$

www.tiwariacademy.com

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Hence, the function f is continuous at $0 \le x \le 1$.

Fourth case: If k = 1,

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (0) = 0$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x) = 4$$
,

Here, at x = 1, LHL \neq RHL.

Hence, the function f is discontinuous at x = 1.

Fifth case: If, k > 1,

$$f(k) = 4k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (4x) = 4k$.

Here,
$$\lim_{x \to k} f(x) = f(k)$$

Hence, the function f is continuous for all real numbers greater than 1.

Therefore, the function f is discontinuous only at x = 1.

Question 16:

$$f(x) = \begin{cases} -2, & \text{If } x \le -1\\ 2x, & \text{If } -1 < x \le 1\\ 2, & \text{If } x > 1 \end{cases}$$

Answer 16:

Let, *k* be any real number.

According to question, k < -1 or k = -1 or $-1 < x \le 1$ or k = 1 or k > 1

First case: If, k < -1,

$$f(k) = -2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-2) = -2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than -1.

Second case: If, k = -1 पर, f(-1) = -2

LHL =
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (-2) = -2$$

Second case: If,
$$k = -1$$
 44 , $f(-1) = -2$
LHL = $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (-2) = -2$
RHL = $\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} (2x) = -2$. Here, $\lim_{x \to k} f(x) = f(k)$
Hence the function f is continuous at $x = -1$

Hence, the function f is continuous at x = -1

Third case: If, $-1 < x \le 1$,

$$f(k) = 2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at $-1 < x \le 1$.

Fourth case: If, k = 1,

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x) = 2$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2) = 2$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 1.

Fifth case: If, k > 1,

$$f(k) = 2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2) = 2$.
Here, $\lim_{x \to k} f(x) = f(k)$

Here,
$$\lim_{x \to k} f(x) = f(k)$$

Hence, the function f is continuous for all real numbers greater than 1.

Therefore, the function f is continuous for all real numbers.

www.tiwariacademy.com

thematics

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Question 17:

Find the relationship between *a* and *b* so that the function *f* defined by

$$f(x) = \begin{cases} ax + 1, & \text{If } x \le 3\\ bx + 3, & \text{If } x > 3 \end{cases}$$

is continuous at x = 3.

Answer 17:

Given that the function is continuous at x = 3. Therefore, LHL = RHL = f(3)

$$\Rightarrow \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

$$\Rightarrow \lim_{x \to 3^{-}} ax + 1 = \lim_{x \to 3^{+}} bx + 3 = 3a + 1$$

$$\Rightarrow 3a + 1 = 3b + 3 = 3a + 1$$

$$\Rightarrow 3a = 3b + 2 \qquad \Rightarrow a = b + \frac{2}{3}$$

Question 18:

For what value of λ is the function defined by

$$f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{id } x \le 0\\ 4x + 1, & \text{id } x > 0 \end{cases}$$

continuous at x = 0? What about continuity

Answer 18:

Given that the function is continuous at x = 0. Therefore, LHL = RHL = f(0)

$$\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0^{-}} \lambda(x^{2} - 2x) = \lim_{x \to 0^{+}} 4x + 1 = \lambda[(0)^{2} - 2(0)]$$

$$\Rightarrow \lambda[(0)^2 - 2(0)] = 4(0) + 1 = \lambda(0)$$

$$\Rightarrow 0. \lambda = 1 \qquad \Rightarrow \lambda = \frac{1}{0}$$

Hence, there is no real value of λ for which the given function be continuous.

Hence, there is no re If,
$$x = 1$$
,

$$f(1) = 4(1) + 1 = 5$$
 and $\lim_{x \to 1} f(x) = \lim_{x \to 1} 4(1) + 1 = 5$, Here, $\lim_{x \to 1} f(x) = f(1)$

Hence, the function f is continuous for all real values of λ .

Question 19:

Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Answer 19:

Let, k be any integer.

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} x - [x] = k - (k - 1) = 1$$

RHL = $\lim_{x \to k^{+}} f(x) = \lim_{x \to k^{+}} x - [x] = k - (k) = 0$,

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} x - [x] = k - (k) = 0$$
,

Here, at x = k, LHL \neq RHL. Hence, the function f is discontinuous for all integers.

Ouestion 20:

Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$.

Answer 20:

Given function:
$$f(x) = x^2 - \sin x + 5$$
,
At $x = \pi$, $f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

$$\lim_{x \to n} f(x) = \lim_{x \to n} x^2 - \sin x + 5 = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$$

Here, at
$$x = \pi$$
, $\lim_{x \to n} f(x) = f(\pi) = \pi^2 + 5$

Hence, the function f is continuous at $x = \pi$.

Question 21:

Discuss the continuity of the following functions:

(a)
$$f(x) = \sin x + \cos x$$

(b)
$$f(x) = \sin x - \cos x$$

(c)
$$f(x) = \sin x \cdot \cos x$$

Answer 21:

Let,
$$g(x) = \sin x$$

Let, k be any real number. At x = k, $g(k) = \sin k$

LHL =
$$\lim_{x \to k^{-}} g(x) = \lim_{x \to k^{-}} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k$$

RHL =
$$\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k + h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k$$

Here, at
$$x = k$$
, LHL = RHL = $g(k)$.

Hence, the function g is continuous for all real numbers.

Let,
$$h(x) = \cos x$$

$$LHL = \lim_{x \to k^{-}} h(x) = \lim_{x \to k^{-}} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k$$

$$RHL = \lim_{x \to k^{+}} h(x) = \lim_{x \to k^{+}} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$$

Here, at
$$x = k$$
, LHL = RHL = $h(k)$.

Hence, the function h is continuous for all real numbers.

We know that if g and h are two continuous functions, then the functions g + h, g - h and gh also be a continuous functions.

Hence, (a)
$$f(x) = \sin x + \cos x$$
 (b) $f(x) = \sin x - \cos x$ and (c) $f(x) = \sin x \cdot \cos x$ are continuous functions.

Question 22:

Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Answer 22:

Let
$$g(x) = \sin x$$

Let,
$$k$$
 be any real number. At $x = k$, $g(k) = \sin k$

LHL =
$$\lim_{x \to k^{-}} g(x) = \lim_{x \to k^{-}} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k$$

RHL =
$$\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k+h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k$$

Here, at $x = k$, LHL = RHL = $g(k)$.

Hence, the function g is continuous for all real numbers.

Let
$$h(x) = \cos x$$

Let,
$$k$$
 be any real number. At $x = k$, $h(k) = \cos k$

LHL =
$$\lim_{x \to k^{-}} h(x) = \lim_{x \to k^{-}} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k$$

RHL =
$$\lim_{x \to k^+} h(x) = \lim_{x \to k^+} \cos x = \lim_{h \to 0} \cos(k+h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$$

Here, at $x = k$, LHL = RHL = $h(k)$.

Hence, the function h is continuous for all real numbers.

We know that if g and h are two continuous functions, then the functions $\frac{g}{h}$, $h \neq 0$, $\frac{1}{h}$, $h \neq 0$ and $\frac{1}{g}$, $g \neq 0$ be continuous functions.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Therefore, $cosec\ x = \frac{1}{\sin x}$, $\sin x \neq 0$ is continuous $\Rightarrow x \neq n\pi\ (n \in Z)$ is continuous. Hence, $cosec\ x$ is continuous except $x = n\pi\ (n \in Z)$.

 $\sec x = \frac{1}{\cos x}$, $\cos x \neq 0$ is continuous. $\Rightarrow x \neq \frac{(2n+1)\pi}{2}$ $(n \in Z)$ is continuous. Hence, $\sec x$ is continuous except $x = \frac{(2n+1)\pi}{2}$ $(n \in Z)$.

 $\cot x = \frac{\cos x}{\sin x}$, $\sin x \neq 0$ is continuous. $\Rightarrow x \neq n\pi \ (n \in Z)$ is continuous. Hence, $\cot x$ is continuous except $x = n\pi \ (n \in Z)$.

Question 23:

Find all points of discontinuity of f, where

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{If } x < 0\\ x + 1, & \text{If } x \ge 0 \end{cases}$$

Answer 23:

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0First case: If, k < 0,

$$f(k) = \frac{\sin k}{k}$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{\sin x}{x}\right) = \frac{\sin k}{k}$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 0.

Second case: If, k = 0, f(0) = 0 + 1 = 1

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1) = 0+1=1$$

RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 0 + 1 = 1$$
,

Here, at x = 0, LHL = RHL = f(0). Hence, the function f is continuous at x = 0.

Third case: If, k > 0,

$$f(k) = k + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 0. Therefore, the function f is continuous for all real numbers.

Question 24:

Determine if *f* defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{If } x \neq 0 \\ 0, & \text{If } x = 0 \end{cases}$$

is a continuous function?

Answer 24:

Let, k be any real number. According to question, $k \neq 0$ or k = 0

$$f(k) = k^2 \sin \frac{1}{k}$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(x^2 \sin \frac{1}{x} \right) = k^2 \sin \frac{1}{k}$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $k \neq 0$.

Second case: If, k = 0, f(0) = 0

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x^{2} \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^{2} \sin \frac{1}{x} \right)$$

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

We know that, $-1 \le \sin \frac{1}{x} \le 1$, $x \ne 0$ $\Rightarrow -x^2 \le \sin \frac{1}{x} \le x^2$

$$\Rightarrow \lim_{x \to 0} (-x^2) \le \lim_{x \to 0} \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$\Rightarrow \lim_{x \to 0} (-x^2) \le \lim_{x \to 0} \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$\Rightarrow 0 \le \lim_{x \to 0} \sin \frac{1}{x} \le 0 \quad \Rightarrow \lim_{x \to 0} \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0^-} x^2 \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0^-} f(x) = 0$$

Similarly, RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$
,

Here, at x = 0, LHL = RHL = f(0)

Hence, atx = 0, f is continuous.

Hence, the function *f* is continuous for all real numbers.

Question 25:

Examine the continuity of f, where f is defined by

$$f(x) = \begin{cases} \sin x - \cos x, & \text{If } x \neq 0 \\ -1, & \text{If } x = 0 \end{cases}$$

Answer 25:

Let, k be any real number. According to question, $k \neq 0$ or k = 0

First case: If,
$$k \neq 0$$
, $f(0) = 0 - 1 = -1$

LHL =
$$\lim_{k \to 0^{-}} f(x) = \lim_{k \to 0^{-}} (\sin x - \cos x) = 0 - 1 = -1$$

RHL =
$$\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} (\sin x - \cos x) = 0 - 1 = -1$$
,

Hence, at $x \neq 0$, LHL = RHL = f(x)

Hence, the function f is continuous at $x \neq 0$.

Second case: If,
$$k = 0$$
, $f(k) = -1$

Second case: If,
$$k = 0$$
, $f(k) = -1$ and $\lim_{x \to k} f(x) = \lim_{x \to k} (-1) = -1$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 0.

Therefore, the function *f* is continuous for all real numbers.

Find the values of k so that the function f is continuous at the indicated point in exercises 26 to 29.

Question 26:

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{If } x \neq \frac{\pi}{2} \\ 3, & \text{If } x = \frac{\pi}{2} \end{cases} \text{ at } x = \frac{\pi}{2}$$

Answer 26:

Given that the function is continuous at $x = \frac{\pi}{2}$. Therefore, LHL = RHL = $f\left(\frac{\pi}{2}\right)$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = 3$$

$$\Rightarrow \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)} = 3$$

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

$$\Rightarrow \lim_{h \to 0} \frac{k \sin h}{2h} = \lim_{h \to 0} \frac{-k \sin h}{-2h} = 3$$

$$\Rightarrow \frac{k}{2} = \frac{k}{2} = 3$$

$$\Rightarrow k = 6$$

$$\because \lim_{h \to 0} \frac{\sin h}{h} = 1$$

Question 27:

$$f(x) = \begin{cases} kx^2, & \text{If } x \le 2\\ 3, & \text{If } x > 2 \end{cases} \text{ at } x = 2$$

Answer 27:

Given that the function is continuous at x = 2.

Therefore, LHL = RHL = f(2)

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$
$$\Rightarrow \lim_{x \to 2^{-}} kx^{2} = \lim_{x \to 2^{+}} 3 = k(2)^{2}$$

$$\Rightarrow \lim_{x \to 2^{-}} kx^{2} = \lim_{x \to 2^{+}} 3 = k(2)^{2}$$

$$\Rightarrow 4k = 3 = 4k$$

$$\Rightarrow k = \frac{3}{4}$$

Question 28:

$$f(x) = \begin{cases} kx + 1, & \text{If } x \le \pi \\ \cos x, & \text{If } x > \pi \end{cases} \text{ at } x = \pi$$

Answer 28:

Given that the function is continuous at $x = \pi$.

Therefore, LHL = RHL = $f(\pi)$

$$\Rightarrow \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(\pi)$$

$$\Rightarrow \lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{+}} f(x) = f(\pi)$$

$$\Rightarrow \lim_{x \to \pi^{-}} kx + 1 = \lim_{x \to \pi^{+}} \cos x = k(\pi) + 1$$

$$\Rightarrow k(\pi) + 1 = \cos \pi = k\pi + 1$$

$$\Rightarrow k\pi + 1 = -1 = k\pi + 1$$

$$\Rightarrow \pi k = -2$$

$$\Rightarrow k = -\frac{2}{\pi}$$

Question 29:

$$f(x) = \begin{cases} kx + 1, & \text{If } x \le 5 \\ 3x - 5, & \text{If } x > 5 \end{cases} \text{ at } x = 5$$

Answer 29:

Given that the function is continuous at x = 5.

Therefore, LHL = RHL = f(5)

$$\Rightarrow \lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

$$\Rightarrow \lim_{x \to 5^{-}} kx + 1 = \lim_{x \to 5^{+}} 3x - 5 = 5k + 1$$

$$\Rightarrow 5k + 1 = 15 - 5 = 5k + 1$$

$$\Rightarrow 5k = 9$$

$$\Rightarrow k = \frac{9}{5}$$

www.tiwariacademy.com

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Question 30:

Find the values of *a* and *b* such that the function defined by

$$f(x) = \begin{cases} 5, & \text{If } x \le 2\\ ax + b, & \text{If } 2 < x < 10\\ 21, & \text{If } x \ge 10 \end{cases}$$

is a continuous function.

Answer 30:

Given that the function is continuous at x = 2. Therefore, LHL = RHL = f(2)

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} 5 = \lim_{x \to 2^{+}} ax + b = 5$$

$$\Rightarrow 2a + b = 5 \qquad \dots (1)$$

Given that the function is continuous at x = 10. Therefore, LHL = RHL = f(10)

$$\Rightarrow \lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{+}} f(x) = f(10)$$
$$\Rightarrow \lim_{x \to 10^{-}} ax + b = \lim_{x \to 10^{+}} 21 = 21$$

$$\Rightarrow \lim_{x \to 10^{-}} ax + b = \lim_{x \to 10^{+}} 21 = 21$$

$$\Rightarrow 10a + b = 21 \qquad \dots (2)$$

Solving the equation (1) and (2), we get

$$a = 2$$
 $b = 1$

Question 31:

Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.

Answer 31:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h(f = goh). Where, $g(x) = \cos x$ and $h(x) = x^2$. If g and h both are continuous function then f also be continuous.

$$[\because goh(x) = g(h(x)) = g(x^2) = \cos(x^2)]$$

Function $g(x) = \cos x$

Let, k be any real number. At x = k, $g(k) = \cos k$

$$\lim_{x \to k} g(x) = \lim_{x \to k} \cos x = \lim_{h \to 0} \cos(k+h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$$

Here, $\lim_{x\to k}g(x)=g(k)$, Hence, the function g is continuous for all real numbers.

Function $h(x) = x^2$

Let, k be any real number. At x = k, $h(k) = k^2$

$$\lim_{x \to \infty} h(x) = \lim_{x \to \infty} x^2 = k^2$$

$$\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$$

Here, $\lim h(x) = h(k)$, Hence, the function h is continuous for all real numbers.

Therefore, *g* and *h* both are continuous function. Hence, *f* is continuous.

Question 32:

Show that the function defined by $f(x) = |\cos x|$ is a continuous function.

Answer 32:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h(f = goh). Where, g(x) = |x|and $h(x) = \cos x$. If g and h both are continuous function then f also be continuous.

$$[\because goh(x) = g(h(x)) = g(\cos x) = |\cos x|]$$

Function g(x) = |x|

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Rearranging the function g, we get

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0 First case: If, k < 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers less than 0.

Second case: If, k = 0, g(0) = 0 + 1 = 1

LHL=
$$\lim_{x\to 0^{-}} g(x) = \lim_{x\to 0^{-}} (-x) = 0$$

RHL =
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$
,

Here, at x = 0, LHL = RHL = g(0)

Hence, the function g is continuous at x = 0.

Third case: If, k > 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers greater than 0.

Hence, the function g is continuous for all real numbers.

Function $h(x) = \cos x$

Let, k be any real number. At x = k, $h(k) = \cos k$

$$\lim_{x \to k} h(x) = \lim_{x \to k} \cos x = \cos k$$

Here, $\lim_{x\to k} h(x) = h(k)$, Hence, the function h is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

Question 33:

Examine that $\sin |x|$ is a continuous function.

Answer 33:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h (f = hog). Where, $h(x) = \sin x$ and g(x) = |x|. If g and h both are continuous function then f also be continuous.

$$[\because hog(x) = h(g(x)) = h(|x|) = \sin|x|]$$

Function $h(x) = \sin x$

Let, k be any real number. At x = k, $h(k) = \sin k$

$$\lim_{x \to k} h(x) = \lim_{x \to k} \sin x = \sin k$$

Here, $\lim_{x\to k} h(x) = h(k)$, Hence, the function h is continuous for all real numbers.

Function
$$g(x) = |x|$$

Redefining the function g, we get

$$g(x) = \begin{cases} -x, & \text{If } x < 0 \\ x, & \text{If } x > 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0 First case: If, k < 0.

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers less than 0.

www.tiwariacademy.com

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Second case: If,
$$k = 0$$
, $g(0) = 0 + 1 = 1$

LHL =
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

RHL =
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$
,

Here, at x = 0, LHL = RHL = g(0)

Hence, at x = 0, the function g is continuous.

Third case: If, k > 0,

$$g(k)=0$$
 and $\lim_{x\to k}g(x)=\lim_{x\to k}(x)=0$, Here, $\lim_{x\to k}g(x)=g(k)$
Hence, the function g is continuous for all real numbers greater than 0 .

Hence, the function *g* is continuous for all real numbers.

Therefore, *g* and *h* both are continuous function. Hence, *f* is continuous.

Question 34:

Find all the points of discontinuity of *f* defined by f(x) = |x| - |x + 1|.

Answer 34:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h(f = g - h), where, g(x) = |x|and h(x) = |x + 1|. If g and h both are continuous function then f also be continuous. Function g(x) = |x|

Redefining the function g, we get,

$$g(x) = \begin{cases} -x, & \text{If } x < 0 \\ x, & \text{If } x \ge 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0First case: If, k < 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers less than 0.

Second case: If, k = 0, g(0) = 0 + 1 = 1

LHL =
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$
 and RHL = $\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (x) = 0$,

Here, at x = 0, LHL = RHL = g(0)

Hence, the function g is continuous at x = 0.

Third case: If, k > 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers more than 0.

Hence, the function *g* is continuous for all real numbers.

Function h(x) = |x + 1|

Redefining the function h, we get

$$h(x) = \begin{cases} -(x+1), & \text{if } x < -1 \\ x+1, & \text{if } x \ge -1 \end{cases}$$

Let, k be any real number. According to question, k < -1 or k = -1 or k > -1First case: If, k < -1,

$$h(k) = -(k+1)$$
 and $\lim_{x \to k} h(x) = \lim_{x \to k} -(k+1) = -(k+1)$, Here, $\lim_{x \to k} h(x) = h(k)$.
Hence, the function g is continuous for all real numbers less than – 1.

Second case: If,
$$k = -1$$
, $h(-1) = -1 + 1 = 0$

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

LHL =
$$\lim_{x \to -1^{-}} h(x) = \lim_{x \to -1^{-}} - (-1+1) = 0$$

RHL =
$$\lim_{x \to -1^+} h(x) = \lim_{x \to -1^+} (x+1) = -1 + 1 = 0$$
,

Here, at
$$x = -1$$
, LHL = RHL = $h(-1)$

Hence, the function h is continuous at x = -1.

Third case: If, k > -1,

$$h(k) = k + 1$$
 and $\lim_{x \to k} h(x) = \lim_{x \to k} (k + 1) = k + 1$, Here, $\lim_{x \to k} h(x) = h(k)$

Hence, the function g is continuous for all real numbers greater than -1. Hence, the function h is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

www.tiwariacademy.com
A Free web support in education