Mathematics

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)
(Class 12)

Exercise 5.8

Question 1:

Verify Rolle's Theorem for the function $f(x) = x^2 + 2x - 8$, $x \in [-4, 2]$.

Answer 1:

Given function $f(x) = x^2 + 2x - 8, x \in [-4, 2]$

(i) Function f is a polynomial function, so it is continuous in close interval [-4, 2].

(ii)
$$f'(x) = 2x + 2$$

Hence, the function f is differentiable in open interval (-4, 2).

(iii)
$$f(-4) = (-4)^2 + 2(-4) - 8 = 16 - 8 - 8 = 0$$

and
$$f(2) = (2)^2 + 2(2) - 8 = 4 + 4 - 8 = 0$$

$$\Rightarrow f(-4) = f(2)$$

Here, all the three conditions of Rolle's Theorem is satisfied. Therefore, there must be a number $c \in (-4, 2)$ such that f'(c) = 0.

$$\Rightarrow f'(c) = 2c + 2 = 0$$

$$\Rightarrow c = -1 \in (-4, 2)$$

Hence, the Rolle's Theorem is verified for the function $f(x) = x^2 + 2x - 8$, $x \in [-4, 2]$.

Question 2:

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say something about the converse of Rolle's Theorem from these example?

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

Answer 2:

Rolle's Theorem is applicable to function $f:[a,b] \to \mathbb{R}$ the following three conditions of Rolle's Theorem is satisfied.

- (i) Function f is continuous in closed interval [a, b].
- (ii) Function f is differentiable in open interval (a, b).

(iii)
$$f(a) = f(b)$$

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

The greatest integer function f is neither continuous in close interval [5,9] nor differentiable in open interval (5,9). Also $f(5) \neq f(9)$.

Hence, the Rolle's Theorem is not applicable to f(x) = [x] for $x \in [5, 9]$.

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

The greatest integer function f is neither continuous in close interval [-2,2] nor differentiable in open interval (2,2). Also $f(-2) \neq f(2)$.

Hence, the Rolle's Theorem is not applicable to f(x) = [x] for $x \in [-2, 2]$.

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

The function f is a polynomial function, so it is continuous in closed interval [1, 2].

f'(x) = 2x, hence, the function f is differentiable in open interval (1, 2).

$$f(1) = (1)^2 - 1 = 0$$
 and

$$f(2) = (2)^2 - 1 = 3$$

$$\Rightarrow f(1) \neq f(2)$$

Hence, Rolle's Theorem is not applicable to the function $f(x) = x^2 - 1$ for $x \in [1, 2]$.

www.tiwariacademy.com

A Free web support in education

Mathematics

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Question 3:

If $f: [-5, 5] \to \mathbb{R}$ is a differentiable function and if f'(x) does not vanish anywhere, then prove that $f(-5) \neq f(5)$

Answer 3:

 $f: [-5, 5] \rightarrow \mathbf{R}$ is a differentiable function, hence

- (i) The function f is continuous in closed interval [-5, 5].
- (ii) The function f is continuous in open interval (-5, 5).

According to Mean Value Theorem, there exists a value $c \in (-5, 5)$, such that

$$f'(c) = \frac{f(5) - f(-5)}{5 - (-5)}$$

But it is given that f'(x) does not vanish anywhere, hence

$$f'(c) = \frac{f(5) - f(-5)}{5 - (-5)} \neq 0$$

$$\Rightarrow f(5) - f(-5) \neq 0$$

$$\Rightarrow f(5) \neq f(-5)$$

Question 4:

Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b], where a = 1and b = 4.

Answer 4:

Given function: $f(x) = x^2 - 4x - 3$, $x \in [1, 4]$

(i) Function *f* is a polynomial function, hence it is continuous in closed interval [1, 4].

(ii)
$$f'(x) = 2x - 4$$

Hence, the function f is differentiable in open interval (1, 4).

According to Mean Value Theorem, there exists a value $c \in (1, 4)$, such that

$$f'(c) = \frac{f(4) - f(1)}{4 - 1}$$

$$f'(c) = \frac{f(4) - f(1)}{4 - 1}$$

$$\Rightarrow 2c - 4 = \frac{[(4)^2 - 4(4) - 3] - [(1)^2 - 4(1) - 3]}{3}$$

$$\Rightarrow 2c - 4 = \frac{-3 - (-6)}{3} = \frac{3}{3} = 1$$

$$\Rightarrow 2c = 5 \qquad \Rightarrow c = \frac{5}{2} \in (1,4)$$

Hence, for the function $f(x) = x^2 - 4x - 3$, $x \in [1, 4]$, the Mean Value Theorem is verified.

Question 5:

Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b], where a = 1 and b = 3. Find all $c \in (1, 3)$ for which f'(c) = 0.

Answer 5:

Given function: $f(x) = x^3 - 5x^2 - 3x$, $x \in [1, 3]$

(i) Function f is a polynomial function, hence it is continuous in closed interval [1, 3].

(ii)
$$f'(x) = 3x^2 - 10x - 3$$

Hence, the function f is differentiable in open interval (1,3).

According to Mean Value Theorem, there exists a value $c \in (1,3)$, such that

www.tiwariacademy.com

A Free web support in education

Mathematics

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

$$f'(c) = \frac{f(3) - f(1)}{3 - 1}$$

$$\Rightarrow 3c^2 - 10c - 3 = \frac{[(3)^3 - 5(3)^2 - 3(3)] - [(1)^3 - 5(1)^2 - 3(1)]}{2}$$

$$\Rightarrow 3c^2 - 10c - 3 = \frac{(27 - 54) - (1 - 8)}{2} = \frac{-27 + 7}{2} = -10$$

$$\Rightarrow 3c^2 - 10c + 7 = 0$$

$$\Rightarrow 3c^2 - 3c - 7c + 7 = 0$$

$$\Rightarrow 3c(c - 1) - 7(c - 1) = 0$$

$$\Rightarrow (c - 1)(3c - 7) = 0$$

$$\Rightarrow c - 1 = 0 \text{ or } 3c - 7 = 0$$

$$\Rightarrow c = 1 \text{ or } c = \frac{7}{3}$$

$$\Rightarrow c = \frac{7}{3} \in (1, 3)$$

Hence, for the function $f(x) = x^3 - 5x^2 - 3x$, $x \in [1,3]$, the Mean Value Theorem is verified. For the value of $c = \frac{7}{3}$ the function f'(c) = 0.

Question 6:

Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

Answer 6:

Mean Value Theorem is applicable to function $f:[a,b] \to \mathbb{R}$ the following two conditions of Mean Value Theorem is satisfied.

- (i) Function *f* is continuous in closed interval [*a*, *b*].
- (ii) Function f is differentiable in open interval (a, b).

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

The greatest integer function f is neither continuous in close interval [5, 9] nor differentiable in open interval (5, 9).

Hence, the Mean Value Theorem is not applicable to f(x) = [x] for $x \in [5, 9]$.

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

The greatest integer function f is neither continuous in close interval [-2,2] nor differentiable in open interval (2,2).

Hence, the Mean Value Theorem is not applicable to f(x) = [x] for $x \in [-2, 2]$.

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

The function f is a polynomial function, so it is continuous in closed interval [1, 2].

f'(x) = 2x, hence, the function f is differentiable in open interval (1, 2).

Hence, Mean Value Theorem is not applicable to the function $f(x) = x^2 - 1$ for $x \in [1, 2]$.

Hence, the Mean Value Theorem is applicable to $f(x) = x^2 - 1$ for $x \in [1, 2]$.