(www.tiwariacademy.com)

(Chapter – 8) (Quadrilaterals) (Class – 9)

Exercise 8.1

Question 1:

The angles of quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Answer 1:

Let the first angle = 3x

Therefore, the second angle = 5x,

Third angle = 9x and

Fourth angle = 13x

Sum of all angles of a quadrilateral is 360°. Therefore, 3x + 5x + 9x + 13x = 360°

$$\Rightarrow 30x = 360^{\circ} \quad \Rightarrow x = \frac{360^{\circ}}{30} = 12^{\circ}$$

Hence, the first angle = $3 \times 12^{\circ} = 36^{\circ}$,

The second angle = $5 \times 12^{\circ} = 60^{\circ}$,

Third angle = $9 \times 12^{\circ} = 108^{\circ}$

The forth angle = $13 \times 12^{\circ} = 156^{\circ}$

Question 2:

If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Given: ABCD is a parallelogram with AC = BD.

To Prove: ABCD is a rectangle. **Solution**: In \triangle ABC and \triangle BAD,

BC = AD [: Opposite sides of a parallelogram are equal]

AC = BD [∵ Given]
AB = AB [∵ Common]

Hence, $\triangle ABC \cong \triangle BAD$ [: SSS Congruency rule]

 $\angle ABC = \angle BAD$ [: CPCT]

But, $\angle ABC + \angle BAD = 180^{\circ}$ [: Co-interior angles]

⇒ $2\angle BAD = 180^{\circ}$ [:: $\angle ABC = \angle BAD$]

 $\Rightarrow \angle BAD = \frac{180^{\circ}}{2} = 90^{\circ}$

A parallelogram with one of its angle is 90° is a rectangle. Hence, ABCD is a rectangle.

Question 3:

Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer 3:

Given: ABCD is a quadrilateral in which AO = CO, BO = DO and $\angle COD = 90^{\circ}$.

To prove: ABCD is a rhombus. **Solution:** In \triangle AOB and \triangle AOD,

BO = DO [: Given] \angle AOB = \angle AOD [: Each 90°] AO = AO [: Common]

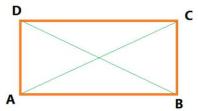
Hence, $\triangle AOB \cong \triangle AOD$ [: SAS Congruency rule]

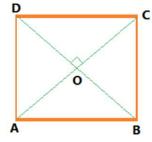
AB = AD [: CPCT]

Similarly, AB = BC and BC = CD

Now, all the four sides of quadrilateral ABCD are equal.

Hence, ABCD is a rhombus.





(www.tiwariacademy.com)

(Chapter – 8) (Quadrilaterals)
(Class – 9)

Question 4:

Show that the diagonals of a square are equal and bisect each other at right angles.

Answer 4:

Given: ABCD is a square.

To prove: AC = BD, AO = CO, BO = DO and $\angle COD = 90^{\circ}$.

Solution: $\triangle BAD$ and $\triangle ABC$,

AD = BC [: Opposite sides of a square]

 $\angle BAD = \angle ABC$ [: Each 90°] AB = AB [: Common]

Hence, $\triangle BAD \cong \triangle ABC$ [: SAS Congruency rule]

 $BD = AC \qquad [\because CPCT]$

In $\triangle AOB$ and $\triangle COD$,

 $\angle OAB = \angle OCD$ [: Alternate angles]

AB = CD [∵ Opposite sides of a square]

 $\angle OBA = \angle ODC$ [: Alternate angles] Hence, $\triangle BAD \cong \triangle ABC$ [: ASA Congruency rule]

AO = OC, BO = OD [: CPCT]

In $\triangle AOB$ and $\triangle AOD$,

OB = OD[\because Proved above]AB = AD[\because Sides of a square]OA = OA[\because Common]

Hongo ADAD ~ AADC

Hence, $\triangle BAD \cong \triangle ABC$ [: SSS Congruency rule]

 $\angle AOB = \angle AOD$ [: CPCT]

But, $\angle AOB + \angle AOD = 180^{\circ}$ [:: Linear Pair] $\Rightarrow 2\angle AOB = 180^{\circ}$ [:: $\angle AOD = \angle AOB$]

 $\Rightarrow \angle AOB = \frac{180^{\circ}}{2} = 90^{\circ}$

Hence, the diagonals of a square are equal and bisect each other at right angles.

Question 5:

Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Answer 5:

Given: ABCD is a quadrilateral such that AC = BD, AO = CO, BO = DO and $\angle COD = 90^{\circ}$.

To prove: ABCD is a square.

Solution: If the diagonals of a quadrilateral bisects each other at right angle, it is a rhombus.

Hence, AB = BC = CD = DA

In \triangle BAD and \triangle ABC,

AD = BC [: Proved above]

BD = AC [: Given] AB = AB [: Common]

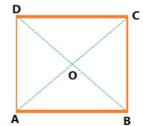
Hence, $\triangle BAD \cong \triangle ABC$ [: SSS Congruency rule]

 $\angle BAD = \angle ABC$ [: CPCT]

But, $\angle BAD + \angle ABC = 180^{\circ}$ [: Co-interior angles] $\Rightarrow 2\angle ABC = 180^{\circ}$ [: $\angle BAD = \angle ABC$]

 $\Rightarrow \angle ABC = \frac{180^{\circ}}{2} = 90^{\circ}$

A Step towards free Education



C

(www.tiwariacademy.com)

(Chapter – 8) (Quadrilaterals) (Class – 9)

Question 6:

Diagonal AC of a parallelogram ABCD bisects ∠A (see Figure). Show that

(i) it bisects ∠C also,

(ii) ABCD is a rhombus.

Answer 6:

(i) $\angle DAC = \angle BAC$... (1) [: Given]

 $\angle DAC = \angle BCA$... (2) [: Alternate angles] $\angle BAC = \angle ACD$... (3) [: Alternate angles]

From the equations (1), (2) and (3), we have

 $\angle ACD = \angle BCA$... (4)

Hence, diagonal AC bisects angle C also.

(ii) From the equation (2) and (4), we have

 $\angle ACD = \angle DAC$

In ΔADC,

 $\angle ACD = \angle DAC$ [: Pr

[∵ Proved above]

AD = DC $[\because$ In a triangle, the sides opposite to equal angle are equal]

A parallelogram whose adjacent sides are equal, is a rhombus. Hence, ABCD is a rhombus.

Question 7:

ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Answer 7:

In ΔADC,

AD = DC [: ABCD is a rhombus]

 $\angle 3 = \angle 1$... (1) [: Angles opposite to equal sides are equal]

But, $\angle 3 = \angle 2$... (2) [: Alternate angles]

Hence, $\angle 1 = \angle 2$... (3) [: From (1) and (2)] and $\angle 1 = \angle 4$... (4) [: Alternate angles]

Hence, $\angle 3 = \angle 4$... (5) [: From (1) and (4)]

Hence, from (3) and (5), diagonal AC bisects angle A as well as angle C.

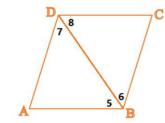
In ΔADB,

AD = AB [: ABCD is a rhombus]

 $\angle 5 = \angle 7$... (6) [: Angles opposite to equal sides are equal]

But, $\angle 7 = \angle 6$... (7) [: Alternate angles] Hence, $\angle 5 = \angle 6$... (8) [: From (6) and (7)] and $\angle 5 = \angle 8$... (9) [: Alternate angles] Hence, $\angle 7 = \angle 8$... (10) [: From (6) and (9)]

Hence, from (8) and (10), diagonal BD bisects angle B as well as angle D.



Question 8:

ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:

(i) ABCD is a square

(ii) diagonal BD bisects $\angle B$ as well as $\angle D$.

Answer 8:

(i) Given: ABCD is a rectangle $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$.

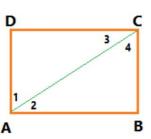
To prove: ABCD is a square.

Solution: $\angle 1 = \angle 4$... (1) [: Alternate angles]

 $\angle 3 = \angle 4$... (2) [: Given]

अतः, ∠1 = ∠3 ... (3) [∵ From (1) and (2)]

In ΔADC,



(www.tiwariacademy.com)

(Chapter – 8) (Quadrilaterals) (Class – 9)

 $\angle 1 = \angle 3$ [: From (3)]

DC = AD [: In a triangle, sides opposite to equal angle are equal]

A rectangle, whose adjacent sides are equal, is a square.

Hence, ABCD is a square.

(ii) To prove: Diagonal BD bisects angle B as well as angle D.

Solution: $\angle 5 = \angle 8$... (4) [: Alternate angles]

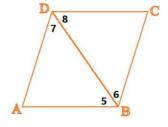
In ΔADB,

AB = AD [: ABCD is a square]

 $\angle 7 = \angle 5$... (5) [: Angles opposite to equal sides are equal]

Hence, $\angle 7 = \angle 8$... (6) [: From (4) and (5)] and $\angle 7 = \angle 6$... (7) [: Alternate angles] Hence, $\angle 5 = \angle 6$... (8) [: From (5) and (7)]

Hence, from (6) and (8), diagonal BD bisects angle B as well as D.



Question 9:

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Figure). Show that:

(i) $\triangle APD \cong \triangle CQB$

(ii) AP = CQ

(iii) $\triangle AQB \cong \triangle CPD$

(iv) AQ = CP

(v) APCQ is a parallelogram

Answer 9:

(i) In \triangle APD and \triangle CQB,

DP = BQ [: Given]

 $\angle ADP = \angle CBQ$ [: Alternate angles]

AD = BC [: Opposite sides of a parallelogram]

Hence, $\triangle APD \cong \triangle CQB$ [: SAS Congruency rule]

(ii) $\triangle APD \cong \triangle CQB$ [: Proved above]

 $AP = CQ \qquad ...(1) \quad [\because CPCT]$

(iii) In ΔAQB and ΔCPD,

QB = DP [: Given]

 $\angle ABQ = \angle CDP$ [: Alternate angles]

AB = CD [∵ Opposite sides of a parallelogram]

Hence, $\triangle AQB \cong \triangle CPD$ [: SAS Congruency rule]

(iv) $\triangle AQB \cong \triangle CPD$ [: Proved above]

 $AQ = CP \qquad ... (2) \quad [\because CPCT]$

(v) In APCQ,

AP = CQ [:: From (1)] AQ = CP [:: From (2)]

The opposite sides of quadrilateral APCQ are equal.

Hence, APCQ is a parallelogram.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 8) (Quadrilaterals) (Class - 9)

Ouestion 10:

ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Figure).

Show that: (i) $\triangle APB \cong \triangle CQD$

(ii) AP = CQ

Answer 10:

(i) In $\triangle APB$ and $\triangle CQD$,

 $\angle APB = \angle CQD$ [: Each 90°]

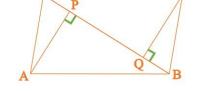
 $\angle ABP = \angle CDQ$ [: Alternate angles]

[: Opposite sides of a parallelogram] AB = CD

Hence, $\triangle APB \cong \triangle CQD$ [: SAS Congruency rule]

(ii) $\triangle APB \cong \triangle CQD$ [: Proved above]

AP = CQ[: CPCT]



Question 11:

In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Figure). Show that

(vi) $\triangle ABC \cong \triangle DEF$.

(ii) quadrilateral BEFC is a parallelogram

(i) quadrilateral ABED is a parallelogram

(iii) $AD \mid\mid CF \text{ and } AD = CF$

(v) AC = DF

Answer 11:

(i) In ABED, AB = DE[: Given] AB || DE [: Given]

Hence, ABED is a parallelogram.

(ii) In BEFC, BC = EF[: Given] [: Given] BC II EF

Hence, BEFC is a parallelogram.

(iii) In ABED,

AD = BE... (1) [: ABED is a parallelogram] AD || BE ... (2) [: ABED is a parallelogram]

In BEFC,

BE = CF... (3) [: ABED is a parallelogram] BE || CF ... (4) [: ABED is a parallelogram]

From (2) and (4), we have AD || CF ... (5)

From (1) and (3), we have AD = CF... (6)

(iv) In ACFD,

AD = CF[: From (6)] AD || CF [: From (5)]

Hence, ACFD is a parallelogram.

(v) In ACFD,

AC = DF[: ACFD is a parallelogram]

(vi) In \triangle ABC and \triangle DEF,

AB = DE[: Given]

AC = DF[: Proved above]

BC = EF[: Given]

Hence, $\triangle ABC \cong \triangle DEF$ [: SSS Congruency rule]

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter – 8) (Quadrilaterals)
(Class – 9)

Question 12:

ABCD is a trapezium in which AB | CD and AD = BC (see Figure). Show that

- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Answer 12:

(i) **Construction**: Produce AB and draw a line through C parallel to AD, which intersects produced AB at E. In AECD,

AE || DC [∵ Given]

AD || CE [∵ By construction]

Hence, AECD is a parallelogram.

AD = CE ... (1) [: Opposite sides of a parallelogram are equal]

AD = BC ... (2) [: Given]

Hence, CE = BC [: From the equation (1) and (2)]

Therefore, in ΔBCE,

 $\angle 3 = \angle 4$... (3) [: In a triangle, the angles opposite to equal sides are equal]

Here, $\angle 2 + \angle 3 = 180^{\circ}$... (4) [: Linear Pair]

 $\angle 1 + \angle 4 = 180^{\circ}$... (5) [: Co-interior angles]

Therefore, $\angle 2 + \angle 3 = \angle 1 + \angle 4$ [: From the equation (4) and (5)]

 $\Rightarrow \angle 2 = \angle 1$ $\Rightarrow \angle B = \angle A$ [: $\angle 3 = \angle 4$]

(ii) ABCD is a trapezium in which AB || DC, hence,

 $\angle 1 + \angle D = 180^{\circ}$... (6) [: Co-interior angles] $\angle 2 + \angle C = 180^{\circ}$... (7) [: Co-interior angles]

Therefore, $\angle 1 + \angle D = \angle 2 + \angle C$ [: From the equation (6) and (7)]

 $\Rightarrow \angle D = \angle C$ $[\because \angle 2 = \angle 1]$

(iii) In \triangle ABC and \triangle BAD,

BC = AD [: Given]

 $\angle ABC = \angle BAD$ [: Proved above] AB = AB [: Common]

Hence, $\triangle ABC \cong \triangle BAD$ [: SAS Congruency rule]

(iv) $\triangle ABC \cong \triangle BAD$ [: Proved above]

Diagonal AC = diagonal BD [∵ CPCT]

A B E