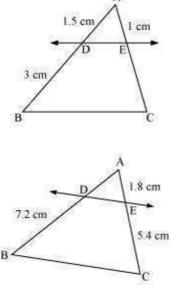


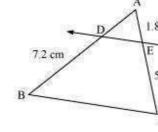
Exercise 6.2

Question 1:

In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii). (i)

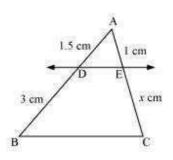


(ii)



Answer 1:

(i)



Let EC = x cm

It is given that DE || BC.

By using basic proportionality theorem, we obtain

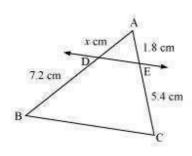
www.tiwariacademy.com

(Chapter – 6) (Triangles)

(Class – X)

 $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{1.5}{3} = \frac{1}{x}$ $x = \frac{3 \times 1}{1.5}$ x = 2 $\therefore EC = 2 \text{ cm}$

(ii)

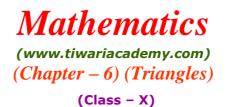


Let AD = x cm

It is given that DE || BC.

By using basic proportionality theorem, we obtain

 $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{x}{7.2} = \frac{1.8}{5.4}$ $x = \frac{1.8 \times 7.2}{5.4}$ x = 2.4 $\therefore AD = 2.4 \text{ cm}$

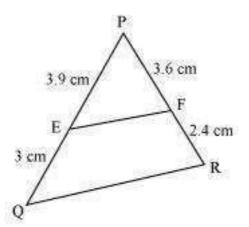


Question 2:

E and F are points on the sides PQ and PR respectively of a ΔPQR. For each of the following cases, state whether EF || QR.
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm (iii)PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm

Answer 2:

(i)

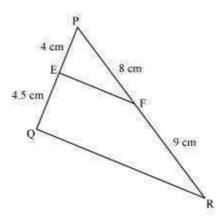


Given that, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm, FR = 2.4 cm $\frac{PE}{EQ} = \frac{3.9}{3} = 1.3$ $\frac{PF}{FR} = \frac{3.6}{2.4} = 1.5$ Hence, $\frac{PE}{EQ} \neq \frac{PF}{FR}$ Therefore, EF is not parallel to QR.

www.tiwariacademy.com

(Class – X)

(ii)

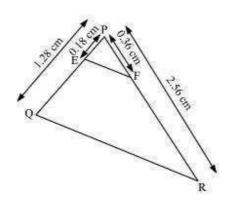


PE = 4 cm, QE = 4.5 cm, PF = 8 cm, RF = 9 cm

 $\frac{PE}{EQ} = \frac{4}{4.5} = \frac{8}{9}$ $\frac{PF}{FR} = \frac{8}{9}$ Hence, $\frac{PE}{EQ} = \frac{PF}{FR}$

Therefore, EF is parallel to QR.

(iii)



PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm

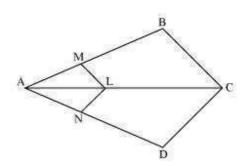
(Class – X)

PE _	0.18	18	9
PQ -	1.28	128	64
PF _	0.36	9	
PR -	2.56	64	
Henc	PE	_ PF	
Tiene	PQ	PR	

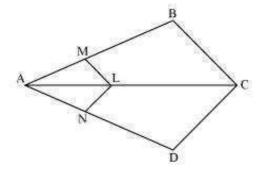
Therefore, EF is parallel to QR.

Question 3:

 $\frac{AM}{AB} = \frac{AN}{AD}.$ In the following figure, if LM $\mid\mid$ CB and LN $\mid\mid$ CD, prove that



Answer 3:



In the given figure, LM || CB By using basic proportionality theorem, we obtain

Mathematics

(www.tiwariacademy.com) (Chapter – 6) (Triangles)

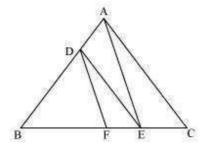
(Class – X)

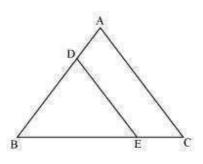
 $\frac{AM}{AB} = \frac{AL}{AC} \qquad (i)$ Similarly, LN || CD $\therefore \frac{AN}{AD} = \frac{AL}{AC} \qquad (ii)$ From (i) and (ii), we obtain $\frac{AM}{AB} = \frac{AN}{AD}$

Question 4:

In the following figure [DE AC and DF AE. Prove that	_
In the following figure, L		
5 5 5		- 1967

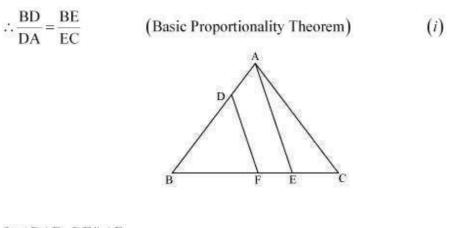
 $\frac{\mathrm{BF}}{\mathrm{FE}} = \frac{\mathrm{BE}}{\mathrm{EC}}.$





In ∆ABC, DE || AC

Answer 4:

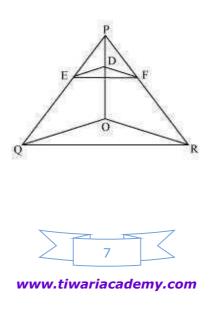


In \triangle BAE, DF AE		
$\therefore \frac{BD}{DA} = \frac{BF}{FE}$	(Basic Proportionality Theorem)	(<i>ii</i>)

From(*i*) and (*ii*), we obtain $\frac{BE}{EC} = \frac{BF}{FE}$

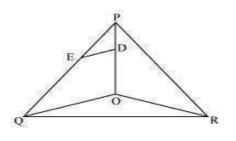
Question 5:

In the following figure, DE || OQ and DF || OR, show that EF || QR.



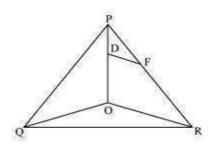
(Class - X)

Answer 5:



In Δ POQ, DE || OQ $\therefore \frac{PE}{EQ} = \frac{PD}{DO}$

(Basic proportionality theorem) (*i*)



In $\triangle POR$, $DF \parallel OR$	
$\therefore \frac{PF}{FR} = \frac{PD}{DO}$	(Basic proportionality theorem)

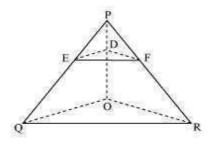
From (i) and (ii), we obtain

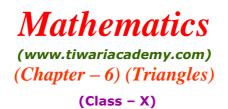
 $\frac{PE}{EQ} = \frac{PF}{FR}$

∴ EF || QR

(Converse of basic proportionality theorem)

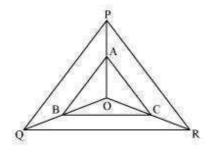
(*ii*)



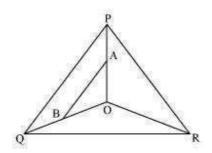


Question 6:

In the following figure, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.



Answer 6:

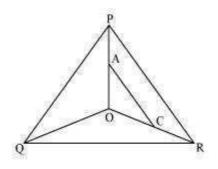


In Δ POQ, AB || PQ

$$\therefore \frac{OA}{AP} = \frac{OB}{BO}$$

(Chapter – 6) (Triangles)

(Class – X)

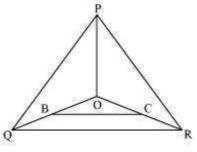


In $\triangle POR$, AC || PR $\therefore \frac{OA}{AP} = \frac{OC}{CR}$

(By basic proportionality theorem) (ii)

From (i) and (ii), we obtain $\frac{OB}{BQ} = \frac{OC}{CR}$ $\therefore BC \parallel QR$ (By the converse of basic

(By the converse of basic proportionality theorem)



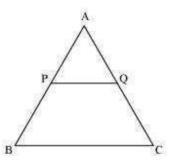
Question 7:

Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

www.tiwariacademy.com

(Class - X)

Answer 7:



Consider the given figure in which PQ is a line segment drawn through the mid-point P of line AB, such that $\frac{PQ \parallel BC}{PQ \parallel BC}$

By using basic proportionality theorem, we obtain

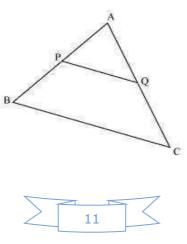
 $\frac{AQ}{QC} = \frac{AP}{PB}$ $\frac{AQ}{QC} = \frac{1}{1} \qquad (P \text{ is the mid-point of AB. } \therefore AP = PB)$ $\Rightarrow AQ = QC$

Or, Q is the mid-point of AC.

Question 8:

Using Converse of basic proportionality theorem, prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer 8:



Consider the given figure in which PQ is a line segment joining the mid-points P and Q of line AB and AC respectively.

i.e., AP = PB and AQ = QC It can be observed that

$$\frac{AP}{PB} = \frac{1}{1}$$

and
$$\frac{AQ}{QC} = \frac{1}{1}$$
$$\therefore \frac{AP}{PB} = \frac{AQ}{QC}$$

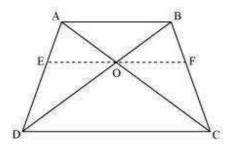
Hence, by using basic proportionality theorem, we obtain $PQ \| BC$

Question 9:

ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the

point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$.

Answer 9:



Draw a line EF through point O, such that $EF \parallel CD$ In $\triangle ADC$, $EO \parallel CD$

By using basic proportionality theorem, we obtain

www.tiwariacademy.com

(Chapter – 6) (Triangles)

(Class - X)

 $\frac{AE}{ED} = \frac{AO}{OC}$ (1)

In $\triangle ABD$, $OE \parallel AB$

So, by using basic proportionality theorem, we obtain

 $\frac{\text{ED}}{\text{AE}} = \frac{\text{OD}}{\text{BO}}$ $\Rightarrow \frac{\text{AE}}{\text{ED}} = \frac{\text{BO}}{\text{OD}} \qquad (2)$

From equations (1) and (2), we obtain

 $\frac{AO}{OC} = \frac{BO}{OD}$ $\Rightarrow \frac{AO}{BO} = \frac{OC}{OD}$

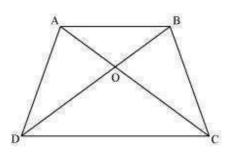
Question 10:

The diagonals of a quadrilateral ABCD intersect each other at the point O such that

 $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.

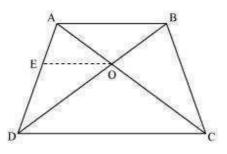
Answer 10:

Let us consider the following figure for the given question.



(Class - X)

Draw a line OE || AB



In ∆ABD, OE || AB

By using basic proportionality theorem, we obtain

 $\frac{AE}{=}$ $\frac{BO}{=}$ (1)ED OD

However, it is given that

 $\frac{AO}{OC} = \frac{OB}{OD}$ (2)

From equations (1) and (2), we obtain

 $\frac{AE}{ED} = \frac{AO}{OC}$

 \Rightarrow EO || DC [By the converse of basic proportionality theorem]

 \Rightarrow AB || OE || DC

 \Rightarrow AB || CD

 \therefore ABCD is a trapezium.

