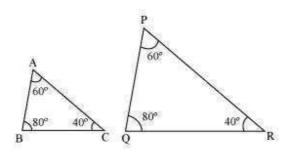
(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Exercise 6.3

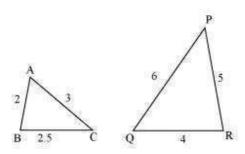
Question 1:

State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

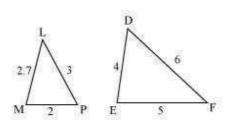
(i)



(ii)



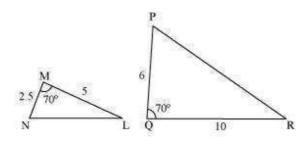
(iii)



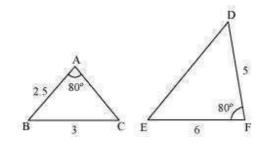
(www.tiwariacademy.com) (Chapter – 6) (Triangles)

(Class - X)

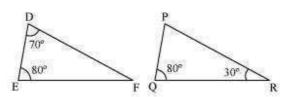
(iv)



(v)



(vi)



Answer 1:

(i)
$$\angle A = \angle P = 60^{\circ}$$

$$\angle B = \angle Q = 80^{\circ}$$

$$\angle C = \angle R = 40^{\circ}$$

Therefore, ΔABC ~ ΔPQR [By AAA similarity criterion]

$$\frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ}$$

(ii)

∴ ∆ABC – ∆QRP [By SSS similarity criterion]

(iii)The given triangles are not similar as the corresponding sides are not proportional.

2

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

(iv)The given triangles are not similar as the corresponding sides are not proportional.

(v)The given triangles are not similar as the corresponding sides are not proportional.

(vi) In ΔDEF,

 $\angle D + \angle E + \angle F = 180^{\circ}$ (Sum of the measures of the angles of a triangle is 180°.)

$$70^{\circ} + 80^{\circ} + \angle F = 180^{\circ}$$

Similarly, in ΔPQR ,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

(Sum of the measures of the angles of a triangle is 180°.)

$$\angle P + 80^{\circ} + 30^{\circ} = 180^{\circ}$$

In $\triangle DEF$ and $\triangle PQR$,

$$\angle D = \angle P \text{ (Each 70°)}$$

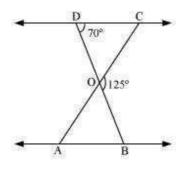
$$\angle E = \angle Q$$
 (Each 80°)

$$\angle F = \angle R$$
 (Each 30°)

 \therefore $\Delta DEF \sim \Delta PQR$ [By AAA similarity criterion]

Question 2:

In the following figure, \triangle ODC \sim \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB



3

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Answer 2:

DOB is a straight line.

$$\therefore \angle DOC + \angle COB = 180^{\circ}$$

$$\Rightarrow$$
 \angle DOC = 180° - 125° = 55°

In ΔDOC,

$$\angle$$
DCO + \angle CDO + \angle DOC = 180°

(Sum of the measures of the angles of a triangle is 180°.)

$$\Rightarrow$$
 \angle DCO + 70° + 55° = 180°

$$\Rightarrow$$
 \angle DCO = 55°

It is given that \triangle ODC \sim \triangle OBA.

 \therefore \angle OAB = \angle OCD [Corresponding angles are equal in similar triangles.]

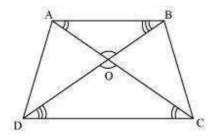
$$\Rightarrow$$
 \angle OAB = 55°

Question 3:

Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the

point O. Using a similarity criterion for two triangles, show that $\frac{AO}{OC} = \frac{OI}{OI}$

Answer 3:



In \triangle DOC and \triangle BOA,

 \angle CDO = \angle ABO [Alternate interior angles as AB || CD]

 \angle DCO = \angle BAO [Alternate interior angles as AB || CD]

 $\angle DOC = \angle BOA$ [Vertically opposite angles]

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

 \therefore \triangle DOC \sim \triangle BOA [AAA similarity criterion]

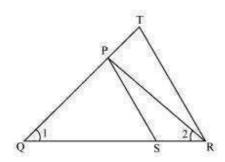
$$\therefore \frac{DO}{BO} = \frac{OC}{OA}$$

[Corresponding sides are proportional]

$$\Rightarrow \frac{OA}{OC} = \frac{OB}{OD}$$

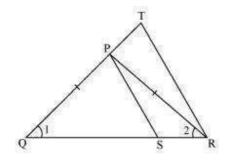
Question 4:

$$\frac{QR}{QS} = \frac{QT}{PR}$$
 and $\angle 1 = \angle 2$.



Show that $\Delta PQS \sim \Delta TQR$

Answer 4:



In $\triangle PQR$, $\angle PQR = \angle PRQ$ $\therefore PQ = PR$ (i)

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class - X)

Given,

$$\frac{QR}{QS} = \frac{QT}{PR}$$

Using (i), we obtain

$$\frac{QR}{QS} = \frac{QT}{QP}$$

In $\triangle PQS$ and $\triangle TQR$,

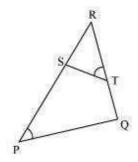
$$\frac{QR}{QS} = \frac{QT}{QP}$$

$$\angle Q = \angle Q$$

Question 5:

S and T are point on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that ΔRPQ ~ ΔRTS .

Answer 5:



In \triangle RPQ and \triangle RST,

 \angle RTS = \angle QPS (Given)

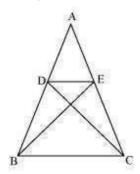
 $\angle R = \angle R$ (Common angle)

 \therefore \triangle RPQ \sim \triangle RTS (By AA similarity criterion)

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

Question 6:

In the following figure, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.



Answer 6:

It is given that $\triangle ABE \cong \triangle ACD$.

$$\therefore$$
 AB = AC [By CPCT](1)

And,
$$AD = AE [By CPCT] \dots (2)$$

In \triangle ADE and \triangle ABC,

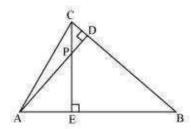
$$\frac{AD}{AB} = \frac{AE}{AC}$$
 [Dividing equation (2) by (1)]

 $\angle A = \angle A$ [Common angle]

∴ ΔADE ~ ΔABC [By SAS similarity criterion]

Question 7:

In the following figure, altitudes AD and CE of ΔABC intersect each other at the point P. Show that:



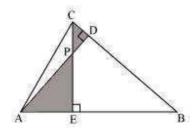
(www.tiwariacademy.com) (Chapter – 6) (Triangles)

(Class - X)

- (i) ΔAEP ~ ΔCDP
- (ii) ΔABD ~ ΔCBE
- (iii) ΔAEP ~ ΔADB
- (v) $\triangle PDC \sim \triangle BEC$

Answer 7:

(i)



In \triangle AEP and \triangle CDP,

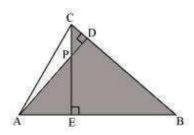
 $\angle AEP = \angle CDP (Each 90^{\circ})$

 $\angle APE = \angle CPD$ (Vertically opposite angles)

Hence, by using AA similarity criterion,

ΔAEP ~ ΔCDP

(ii)



In $\triangle ABD$ and $\triangle CBE$,

 $\angle ADB = \angle CEB (Each 90^{\circ})$

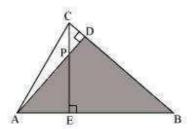
 $\angle ABD = \angle CBE$ (Common)

Hence, by using AA similarity criterion,

ΔABD ~ ΔCBE

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

(iii)



In \triangle AEP and \triangle ADB,

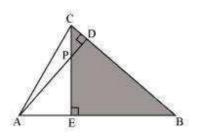
 $\angle AEP = \angle ADB$ (Each 90°)

 $\angle PAE = \angle DAB$ (Common)

Hence, by using AA similarity criterion,

ΔAEP ~ ΔADB

(iv)



In \triangle PDC and \triangle BEC,

 $\angle PDC = \angle BEC \text{ (Each 90°)}$

 \angle PCD = \angle BCE (Common angle)

Hence, by using AA similarity criterion,

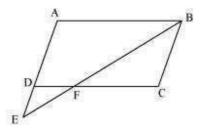
ΔPDC ~ ΔBEC

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Question 8:

E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\Delta ABE \sim \Delta CFB$

Answer 8:



In $\triangle ABE$ and $\triangle CFB$,

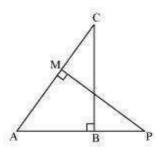
 $\angle A = \angle C$ (Opposite angles of a parallelogram)

 \angle AEB = \angle CBF (Alternate interior angles as AE || BC)

∴ ΔABE ~ ΔCFB (By AA similarity criterion)

Question 9:

In the following figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:



- (i) ΔABC ~ ΔAMP
- (ii) $\frac{CA}{PA} = \frac{BC}{MP}$

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Answer 9:

In \triangle ABC and \triangle AMP,

$$\angle$$
ABC = \angle AMP (Each 90°)

$$\angle A = \angle A$$
 (Common)

∴ ΔABC ~ ΔAMP (By AA similarity criterion)

$$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$$

(Corresponding sides of similar triangles are proportional)

Question 10:

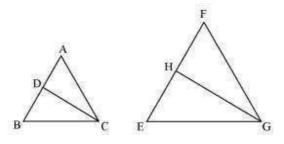
CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, Show that:

(i)
$$\frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$

(ii) ΔDCB ~ ΔHGE

(iii) ΔDCA ~ ΔHGF

Answer 10:



It is given that $\triangle ABC \sim \triangle FEG$.

$$\therefore \angle A = \angle F, \angle B = \angle E, \text{ and } \angle ACB = \angle FGE$$

$$\angle ACB = \angle FGE$$

 \therefore \angle ACD = \angle FGH (Angle bisector)

And, $\angle DCB = \angle HGE$ (Angle bisector)

(www.tiwariacademy.com) (Chapter - 6) (Triangles)

(Class - X)

In $\triangle ACD$ and $\triangle FGH$,

 $\angle A = \angle F$ (Proved above)

 \angle ACD = \angle FGH (Proved above)

∴ ΔACD ~ ΔFGH (By AA similarity criterion)

$$\Rightarrow \frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$

In ΔDCB and ΔHGE,

 $\angle DCB = \angle HGE$ (Proved above)

 $\angle B = \angle E$ (Proved above)

: ΔDCB ~ ΔHGE (By AA similarity criterion)

In Δ DCA and Δ HGF,

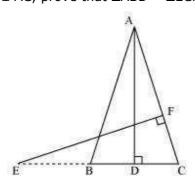
 \angle ACD = \angle FGH (Proved above)

 $\angle A = \angle F$ (Proved above)

∴ ΔDCA ~ ΔHGF (By AA similarity criterion)

Question 11:

In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, prove that Δ ABD \sim Δ ECF



Answer 11:

It is given that ABC is an isosceles triangle.

∴ AB = AC

⇒ ∠ABD = ∠ECF

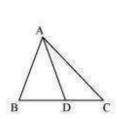
(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

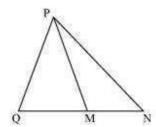
In \triangle ABD and \triangle ECF, \angle ADB = \angle EFC (Each 90°) \angle BAD = \angle CEF (Proved above) \therefore \triangle ABD \sim \triangle ECF (By using AA similarity criterion)

Question 12:

Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR (see the given figure). Show that Δ ABC \sim Δ PQR.

Answer 12:





Median divides the opposite side.

$$BD = \frac{BC}{2} \text{ and } QM = \frac{QR}{2}$$

Given that,

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

In $\triangle ABD$ and $\triangle PQM$,

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

$$\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$
 (Proved above)

.: ΔABD ~ ΔPQM (By SSS similarity criterion)

 \Rightarrow \angle ABD = \angle PQM (Corresponding angles of similar triangles)

In \triangle ABC and \triangle PQR,

 $\angle ABD = \angle PQM$ (Proved above)

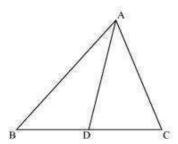
$$\frac{AB}{PQ} = \frac{BC}{QR}$$

∴ ΔABC ~ ΔPQR (By SAS similarity criterion)

Question 13:

D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$.

Answer 13:



In \triangle ADC and \triangle BAC,

 $\angle ADC = \angle BAC$ (Given)

 $\angle ACD = \angle BCA$ (Common angle)

: ΔADC ~ ΔBAC (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion.

$$\therefore \frac{CA}{CB} = \frac{CD}{CA}$$

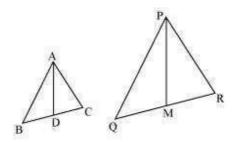
$$\Rightarrow$$
 CA² = CB×CD

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

Question 14:

Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $^{\Delta ABC}$ – $^{\Delta PQR}$

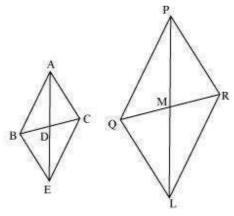
Answer 14:



Given that,

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$

Let us extend AD and PM up to point E and L respectively, such that AD = DE and PM = ML. Then, join B to E, C to E, Q to L, and R to L.



We know that medians divide opposite sides.

Therefore, BD = DC and QM = MR

Also, AD = DE (By construction)

And, PM = ML (By construction)

In quadrilateral ABEC, diagonals AE and BC bisect each other at point D.

(www.tiwariacademy.com) (Chapter – 6) (Triangles) (Class – X)

Therefore, quadrilateral ABEC is a parallelogram.

 \therefore AC = BE and AB = EC (Opposite sides of a parallelogram are equal)

Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL,

$$PQ = LR$$

It was given that

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{2AD}{2PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{AE}{PL}$$

: ΔABE ~ ΔPQL (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

$$\therefore \angle BAE = \angle QPL \dots (1)$$

Similarly, it can be proved that $\triangle AEC \sim \triangle PLR$ and

$$\angle CAE = \angle RPL \dots (2)$$

Adding equation (1) and (2), we obtain

$$\angle BAE + \angle CAE = \angle QPL + \angle RPL$$

$$\Rightarrow \angle CAB = \angle RPQ \dots (3)$$

In \triangle ABC and \triangle PQR,

$$\frac{AB}{PQ} = \frac{AC}{PR}$$
 (Given)

 $\angle CAB = \angle RPQ$ [Using equation (3)]

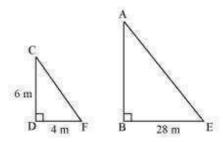
∴ ΔABC ~ ΔPQR (By SAS similarity criterion)

Question 15:

A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Answer 15:



Let AB and CD be a tower and a pole respectively.

Let the shadow of BE and DF be the shadow of AB and CD respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, $\angle DCF = \angle BAE$

And, $\angle DFC = \angle BEA$

 \angle CDF = \angle ABE (Tower and pole are vertical to the ground)

: ΔABE ~ ΔCDF (AAA similarity criterion)

$$\Rightarrow \frac{AB}{CD} = \frac{BE}{DF}$$

$$\Rightarrow \frac{AB}{6 \text{ m}} = \frac{28}{4}$$

$$\Rightarrow AB = 42 \text{ m}$$

Therefore, the height of the tower will be 42 metres.

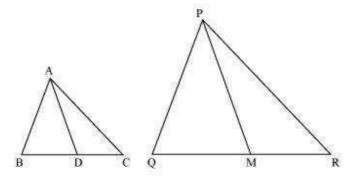
Question 16:

If AD and PM are medians of triangles ABC and PQR, respectively where

$$\triangle ABC \sim \triangle PQR$$
 prove that $t \frac{AB}{PQ} = \frac{AD}{PM}$

(www.tiwariacademy.com) (Chapter - 6) (Triangles) (Class - X)

Answer 16:



It is given that $\Delta ABC \sim \Delta PQR$

We know that the corresponding sides of similar triangles are in proportion.

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR}$$
... (1)

Also,
$$\angle A = \angle P$$
, $\angle B = \angle Q$, $\angle C = \angle R$... (2)

Since AD and PM are medians, they will divide their opposite sides.

$$BD = \frac{BC}{2}$$
 and $QM = \frac{QR}{2}$... (3)

From equations (1) and (3), we obtain

$$\frac{AB}{PQ} = \frac{BD}{QM} \dots (4)$$

In $\triangle ABD$ and $\triangle PQM$,

 $\angle B = \angle Q$ [Using equation (2)]

$$\frac{AB}{PQ} = \frac{BD}{QM}$$
 [Using equation (4)]

: ΔABD ~ ΔPQM (By SAS similarity criterion)

$$\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$