Mathematics

(www.tiwariacademy.com : A step towards free education)

$$(Chapter - 1) (Sets)$$

(Class - XI)

Exercise 1.6

Question 1:

If X and Y are two sets such that n(X) = 17, n(Y) = 23 and $n(X \cup Y) = 38$, find $n(X \cap Y)$.

Answer 1:

It is given that:

$$n(X) = 17, n(Y) = 23, n(X \cup Y) = 38$$

$$n(X \cap Y) = ?$$

We know that:

$$n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$$

$$\therefore 38 = 17 + 23 - n(X \cap Y)$$

$$\Rightarrow n(X \cap Y) = 40 - 38 = 2$$

$$\therefore n(X \cap Y) = 2$$

Question 2:

If X and Y are two sets such that $X \cup Y$ has 18 elements, X has 8 elements and Y has 15 elements; how many elements does $X \cap Y$ have?

Answer 2:

It is given that:

$$n(X \cup Y) = 18$$
, $n(X) = 8$, $n(Y) = 15$

$$n(X if? Y) = ?$$

We know that:

$$n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$$

$$\therefore 18 = 8 + 15 - n(X \cap Y)$$

$$\Rightarrow n(X \cap Y) = 23 - 18 = 5$$

$$\therefore n(X \cap Y) = 5$$

Mathematics

(www.tiwariacademy.com : A step towards free education)

$$(Chapter - 1) (Sets)$$

(Class - XI)

Question 3:

In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people can speak both Hindi and English?

Answer 3:

Let H be the set of people who speak Hindi, and E be the set of people who speak English

$$n(H \cup E) = 400, n(H) = 250, n(E) = 200 n(H \cap E) = ?$$

We know that: $n(H \cup E) = n(H) + n(E) - n(H \cap E)$

$$400 = 250 + 200 - n(H \cap E)$$

$$\Rightarrow$$
 400 = 450 - $n(H \cap E) \Rightarrow n(H \cap E) = 450 - 400$

$$\therefore n(H \cap E) = 50$$

Thus, 50 people can speak both Hindi and English.

Question 4:

If S and T are two sets such that S has 21 elements, T has 32 elements, and $S \cap T$ has 11 elements, how many elements does $S \cup T$ have?

Answer 4:

It is given that: n(S) = 21, n(T) = 32, $n(S \cap T) = 11$

We know that: $n(S \cup T) = n(S) + n(T) - n(S \cap T)$

$$n \cdot n (S \cup T) = 21 + 32 - 11 = 42$$

Thus, the set (S \cup T) has 42 elements.

Mathematics

(www.tiwariacademy.com : A step towards free education)

$$(Chapter - 1) (Sets)$$

(Class - XI)

Question 5:

If X and Y are two sets such that X has 40 elements, X \cup Y has 60 elements and X \cap Y has 10 elements, how many elements does Y have?

Answer 5:

It is given that: n(X) = 40, $n(X \cup Y)$

= 60, $n(X \cap Y)$ = 10 We know that:

 $n(X \cup Y) = n(X) + n(Y) - n(X \cap Y) :$

60 = 40 + n(Y) - 10

n(Y) = 60 - (40 - 10) = 30

Thus, the set Y has 30 elements.

Question 6:

In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the two drinks. How many people like both coffee and tea?

Answer 6:

Let C denote the set of people who like coffee, and T denote the set of people

who like tea $n(C \cup T) = 70$, n(C) = 37, n(T) = 52 We know that:

$$n(C \cup T) = n(C) + n(T) - n(C \cap T) :: 70 = 37 + 52 - n(C \cap T)$$

$$\Rightarrow 70 = 89 - n(C \cap T)$$

$$\Rightarrow n(C \cap T) = 89 - 70 = 19$$

Thus, 19 people like both coffee and tea.

Mathematics

(www.tiwariacademy.com : A step towards free education)

$$(Chapter - 1) (Sets)$$

(Class - XI)

Question 7:

In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Answer 7:

Let C denote the set of people who like cricket, and T denote the set of people who like tennis

$$n(C \cup T) = 65, n(C) = 40, n(C \cap T) = 10$$

We know that: $n(C \cup T) = n(C) + n(T) - n(C \cap T)$

$$...65 = 40 + n(T) - 10$$

$$\Rightarrow$$
 65 = 30 + $n(T)$

$$\Rightarrow n(T) = 65 - 30 = 35$$

Therefore, 35 people like tennis.

Now,

$$(T - C) \cup (T \cap C) = T$$

Also,

$$(T - C) \cap (T \cap C) = \Phi$$

$$\therefore n (\mathsf{T}) = n (\mathsf{T} - \mathsf{C}) + n (\mathsf{T} \cap \mathsf{C})$$

$$\Rightarrow 35 = n (T - C) + 10$$

$$\Rightarrow n (T - C) = 35 - 10 = 25$$

Thus, 25 people like only tennis.

Mathematics

(www.tiwariacademy.com : A step towards free education)

$$(Chapter - 1) (Sets)$$

(Class - XI)

Question 8:

In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak at least one of these two languages?

Answer 8:

Let F be the set of people in the committee who speak French, and S be the set of people in the committee who speak Spanish

$$\therefore n(\mathsf{F}) = 50,$$

$$n(S) = 20,$$

$$n(S \cap F) = 10$$

We know that: $n(S \cup F) = n(S) + n(F) - n(S \cap F)$

$$= 20 + 50 - 10$$

$$= 70 - 10 = 60$$

Thus, 60 people in the committee speak at least one of the two languages.