

Question 1:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$

Answer 1:

The given equation is $\frac{x^2}{36} + \frac{y^2}{16} = 1$. Here, the denominator of $\frac{x^2}{36}$ is greater than the denominator of $\frac{y^2}{16}$.

Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{36 - 16} = \sqrt{20} = 2\sqrt{5}$$

we obtain a = 6 and b = 4. Therefore, The coordinates of the foci are $(2\sqrt{5},0)$ and $(-2\sqrt{5},0)$.

The coordinates of the vertices are (6, 0) and (-6, 0).

Length of major axis = 2a = 12

Length of minor axis = 2b = 8

Eccentricity,
$$e = \frac{c}{a} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 16}{6} = \frac{16}{3}$

(<u>www.tiwariacademy.com</u>) (Chapter 11)(Conic Sections) XI

Question 2:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{4} + \frac{y^2}{25} = 1$

Answer 2:

The given equation is $\frac{x^2}{4} + \frac{y^2}{25} = 1$ or $\frac{x^2}{2^2} + \frac{y^2}{5^2} = 1$. Here, the denominator of $\frac{y^2}{25}$ is greater than the denominator of $\frac{x^2}{4}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis. On comparing the given equation with

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

, we obtain b = 2 and a = 5.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{25 - 4} = \sqrt{21}$$

Therefore, The coordinates of the foci are

$$\left(0,\sqrt{21}\right)$$
 and $\left(0,-\sqrt{21}\right)$

The coordinates of the vertices are (0, 5) and (0, -5)

Length of major axis = 2a = 10

Length of minor axis = 2b = 4

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{21}}{5}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 4}{5} = \frac{8}{5}$

(<u>www.tiwariacademy.com</u>) (Chapter 11)(Conic Sections) XI

Question 3:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Answer 3:

The given equation is $\frac{x^2}{16} + \frac{y^2}{9} = 1$ or $\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$.

Here, the denominator of $\frac{x^2}{16}$ is greater than the denominator of $\frac{y^2}{9}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

, we obtain a = 4 and b = 3.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{16 - 9} = \sqrt{7}$$

Therefore,

The coordinates of the foci are $(\pm\sqrt{7},0)$

The coordinates of the vertices are $(\pm 4, 0)$ Length of major axis = 2a = 8Length of minor axis = 2b = 6Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{7}}{4}$ Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 9}{4} = \frac{9}{2}$

(<u>www.tiwariacademy.com</u>) (Chapter 11)(Conic Sections) XI

Question 4:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{25} + \frac{y^2}{100} = 1$

Answer 4:

The given equation is $\frac{x^2}{25} + \frac{y^2}{100} = 1 \text{ or } \frac{x^2}{5^2} + \frac{y^2}{10^2} = 1$.

Here, the denominator of $\frac{y^2}{100}$ is greater than the denominator of $\frac{x^2}{25}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ $\therefore c = \sqrt{a^2 - b^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}$

we obtain b = 5 and a = 10. Therefore,

The coordinates of the foci are $(0, \pm 5\sqrt{3})$. The coordinates of the vertices are $(0, \pm 10)$. Length of major axis = 2a = 20 Length of minor axis = 2b = 10

Eccentricity, $e = \frac{c}{a} = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}$ Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 25}{10} = 5$

(www.tiwariacademy.com) (Chapter 11)(Conic Sections) XI

Question 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{49} + \frac{y^2}{36} = 1$ Answer 5:

The given equation is $\frac{x^2}{49} + \frac{y^2}{36} = 1 \text{ or } \frac{x^2}{7^2} + \frac{y^2}{6^2} = 1$.

Here, the denominator of $\frac{x^2}{49}$ is greater than the denominator of $\frac{y^2}{36}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

we obtain a = 7 and b = 6.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{49 - 36} = \sqrt{13}$$

Therefore,

The coordinates of the foci are $(\pm\sqrt{13},0)$.

The coordinates of the vertices are $(\pm 7, 0)$.

Length of major axis = 2a = 14

Length of minor axis = 2b = 12

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{13}}{7}$$

Length of latus rectum
$$=\frac{2b^2}{a}=\frac{2\times 36}{7}=\frac{72}{7}$$

(www.tiwariacademy.com) (Chapter 11)(Conic Sections) XI

Question 6:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

 $\frac{x^2}{100} + \frac{y^2}{400} = 1$ the eccentricity and the length of the latus rectum of the ellipse

Answer 6:

The given equation is $\frac{x^2}{100} + \frac{y^2}{400} = 1 \text{ or } \frac{x^2}{10^2} + \frac{y^2}{20^2} = 1$.

Here, the denominator of $\frac{y^2}{400}$ is greater than the denominator of $\frac{x}{100}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing the given equation with $\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1$

 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{400 - 100} = \sqrt{300} = 10\sqrt{3}$

we obtain b = 10 and a = 20. Therefore,

The coordinates of the foci are $(0,\pm 10\sqrt{3})$

The coordinates of the vertices are $(0, \pm 20)$

Length of major axis = 2a = 40

Length of minor axis = 2b = 20

Eccentricity,
$$e = \frac{c}{a} = \frac{10\sqrt{3}}{20} = \frac{\sqrt{3}}{2}$$

Length of latus rectum $=\frac{2b^2}{a}=\frac{2\times100}{20}=10$

(www.tiwariacademy.com) (Chapter 11)(Conic Sections) XI

Question 7:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36x^2 + 4y^2 = 144$

Answer 7:

The given equation is $36x^2 + 4y^2 = 144$.

It can be written as

$$36x^{2} + 4y^{2} = 144$$

Or, $\frac{x^{2}}{4} + \frac{y^{2}}{36} = 1$
Or, $\frac{x^{2}}{2^{2}} + \frac{y^{2}}{6^{2}} = 1$...(1)

 x^2 Here, the denominator of $\frac{y^2}{6^2}$ is greater than the denominator of $\frac{x}{2^2}$

Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing equation (1) with
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2}$

we obtain b = 2 and a = 6.

Therefore,

The coordinates of the foci are $(0, \pm 4\sqrt{2})$ The coordinates of the vertices are $(0, \pm 6)$. Length of major axis = 2a = 12Length of minor axis = 2b = 4

(www.tiwariacademy.com)

(Chapter 11)(Conic Sections) XI

Eccentricity,
$$e = \frac{c}{a} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$$

Length of latus rectum $=\frac{2b^2}{a}=\frac{2\times 4}{6}=\frac{4}{3}$

Question 8:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16x^2 + y^2 = 16$

Answer 8:

The given equation is $16x^2 + y^2 = 16$.

It can be written as

$$16x^{2} + y^{2} = 16$$

Or, $\frac{x^{2}}{1} + \frac{y^{2}}{16} = 1$
Or, $\frac{x^{2}}{1^{2}} + \frac{y^{2}}{4^{2}} = 1$...(1)

Here, the denominator of $\frac{y^2}{4^2}$ is greater than the denominator of $\frac{x^2}{1^2}$

 x^2

Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing equation (1) with
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{16 - 1} = \sqrt{15}$

we obtain b = 1 and a = 4.

Therefore,

The coordinates of the foci are $(0, \pm \sqrt{15})$ The coordinates of the vertices are $(0, \pm 4)$.

(www.tiwariacademy.com) (Chapter 11)(Conic Sections) XI

Length of major axis = 2a = 8Length of minor axis = 2b = 2Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{15}}{4}$ Length of latus rectum $=\frac{2b^2}{a}=\frac{2\times 1}{4}=\frac{1}{2}$

Question 9:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4x^2 + 9y^2 = 36$

Answer 9:

The given equation is $4x^2 + 9y^2 = 36$.

It can be written as

$$4x^{2} + 9y^{2} = 36$$

Or, $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$
Or, $\frac{x^{2}}{3^{2}} + \frac{y^{2}}{2^{2}} = 1$...(1)

Here, the denominator of $\frac{x^2}{3^2}$ is greater than the denominator of $\frac{y^2}{2^2}$

Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis. On comparing the given equation with

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

we obtain a = 3 and b = 2. $\therefore c = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}$

Therefore,

The coordinates of the foci are $(\pm\sqrt{5},0)$

The coordinates of the vertices are $(\pm 3, 0)$.

Length of major axis = 2a = 6

(www.tiwariacademy.com)

(Chapter 11)(Conic Sections)

XI

Length of minor axis = 2b = 4Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{5}}{2}$

Length of latus rectum $=\frac{2b^2}{a}=\frac{2\times 4}{3}=\frac{8}{3}$

Question 10:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 5, 0)$, foci $(\pm 4, 0)$

Answer 10:

Vertices (±5, 0), foci (±4, 0)

Here, the vertices are on the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, a = 5 and c = 4.

It is known that $a^2 = b^2 + c^2$ $\therefore 5^2 = b^2 + 4^2$ $\Rightarrow 25 = b^2 + 16$ $\Rightarrow b^2 = 25 - 16$ $\Rightarrow b = \sqrt{9} = 3$

Thus, the equation of the ellipse is

$$\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$$
 or $\frac{x^2}{25} + \frac{y^2}{9} = 1$

Question 11:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(0, \pm 13)$, foci (0, ±5)

Answer 11:

Vertices (0, ±13), foci (0, ±5) Here, the vertices are on the y-axis. Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, a = 13 and c = 5.

(<u>www.tiwariacademy.com</u>) (Chapter 11)(Conic Sections) XI

It is known that $a^2 = b^2 + c^2$ $\therefore 13^2 = b^2 + 5^2$ $\Rightarrow 169 = b^2 + 25$ $\Rightarrow b^2 = 169 - 25$ $\Rightarrow b = \sqrt{144} = 12$

Thus, the equation of the ellipse is

$$\frac{x^2}{12^2} + \frac{y^2}{13^2} = 1 \text{ or } \frac{x^2}{144} + \frac{y^2}{169} = 1$$

Question 12:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6, 0)$, foci $(\pm 4, 0)$

Answer 12:

Vertices (±6, 0), foci (±4, 0) Here, the vertices are on the x-axis. Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis. Accordingly, a = 6, c = 4. It is known that $a^2 = b^2 + c^2$ $\therefore 6^2 = b^2 + 4^2$ $\Rightarrow 36 = b^2 + 16$ $\Rightarrow b^2 = 36 - 16$ $\Rightarrow b = \sqrt{20}$ Thus, the equation of the ellipse is $\frac{x^2}{6^2} + \frac{y^2}{(\sqrt{20})^2} = 1$ or $\frac{x^2}{36} + \frac{y^2}{20} = 1$

Question 13:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$

(www.tiwariacademy.com)

(Chapter 11)(Conic Sections) XI

Answer 13:

Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$ Here,

the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, a = 3 and b = 2. Thus, the equation of the ellipse is

$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1 \text{ i.e., } \frac{x^2}{9} + \frac{y^2}{4} = 1$$

Question 14:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis

 $(0, \pm \sqrt{5})$, ends of minor axis (±1, 0)

Answer 14:

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1, 0)$

Here, the major axis is along the *y*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, $a = \sqrt{5}$ and b = 1. Thus, the equation of the ellipse is $\frac{x^2}{1^2} + \frac{y^2}{(\sqrt{5})^2} = 1$ or $\frac{x^2}{1} + \frac{y^2}{5} = 1$.

Question 15:

Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26, foci (±5, 0)

Answer 15:

Length of major axis = 26; foci = $(\pm 5, 0)$.

Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

(www.tiwariacademy.com)

(Chapter 11)(Conic Sections) XI

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, $2a = 26 \Rightarrow a = 13$ and c = 5. It is known that $a^2 = b^2 + c^2$ $\therefore 13^2 = b^2 + 5^2$ $\Rightarrow 169 = b^2 + 25$ $\Rightarrow b^2 = 169 - 25$ $\Rightarrow b = \sqrt{144} = 12$ Thus, the equation of the ellipse is $\frac{x^2}{13^2} + \frac{y^2}{12^2} = 1$

$$\frac{x^2}{13^2} + \frac{y^2}{12^2} = 1$$
 or $\frac{x^2}{169} + \frac{y^2}{144} = 1$

Question 16:

Find the equation for the ellipse that satisfies the given conditions: Length of minor axis 16, foci $(0, \pm 6)$

Answer 16:

Length of minor axis = 16; foci = $(0, \pm 6)$.

Since the foci are on the *y*-axis, the major axis is along the *y*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, $2b = 16 \Rightarrow b = 8$ and c = 6. It is known that $a^2 = b^2 + c^2$ $\therefore a^2 = 8^2 + 6^2 = 64 + 36 = 100$ $\Rightarrow a = \sqrt{100} = 10$ Thus, the equation of the ellipse is $\frac{x^2}{8^2} + \frac{y^2}{10^2} = 1$ or $\frac{x^2}{64} + \frac{y^2}{100} = 1$.

Question 17:

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3, 0)$, a = 4

(www.tiwariacademy.com) (Chapter 11)(Conic Sections) XI

Answer 17:

Foci (±3, 0), a = 4 Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, c = 3 and a = 4. It is known that $a^2 = b^2 + c^2$ $\therefore 4^2 = b^2 + 3^2$ $\Rightarrow 16 = b^2 + 9$ $\Rightarrow b^2 = 16 - 9 = 7$ Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{7} = 1$

Question 18:

Find the equation for the ellipse that satisfies the given conditions: b = 3, c = 4, centre at the origin; foci on the x axis.

Answer 18:

It is given that b = 3, c = 4, centre at the origin; foci on the x axis. Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, b = 3, c = 4. It is known that $a^2 = b^2 + c^2$ $\therefore a^2 = 3^2 + 4^2 = 9 + 16 = 25$ $\Rightarrow a = 5$

Thus, the equation of the ellipse is

$$\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1 \text{ or } \frac{x^2}{25} + \frac{y^2}{9} = 1$$

Question 19:

Find the equation for the ellipse that satisfies the given conditions: Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6).

(www.tiwariacademy.com) (Chapter 11)(Conic Sections)

XI

Answer 19:

Since the centre is at (0, 0) and the major axis is on the y-axis, the equation of the ellipse will be of the form

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \qquad \dots (1)$$

Where, a is the semi-major axis

The ellipse passes through points (3, 2) and (1, 6). Hence,

$$\frac{9}{b^2} + \frac{4}{a^2} = 1 \qquad \dots(2)$$
$$\frac{1}{b^2} + \frac{36}{a^2} = 1 \qquad \dots(3)$$

On solving equations (2) and (3), we obtain $b^2 = 10$ and $a^2 = 40$.

Thus, the equation of the ellipse is

$$\frac{x^2}{10} + \frac{y^2}{40} = 1$$
 or $4x^2 + y^2 = 40$

Question 20:

Find the equation for the ellipse that satisfies the given conditions: Major axis on the x axis and passes through the points (4, 3) and (6, 2).

Answer 20:

Since the major axis is on the x-axis, the equation of the ellipse will be of the form

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$...(1)

Where, a is the semi-major axis

The ellipse passes through points (4, 3) and (6, 2). Hence,

$$\frac{16}{a^2} + \frac{9}{b^2} = 1 \qquad \dots(2)$$
$$\frac{36}{a^2} + \frac{4}{b^2} = 1 \qquad \dots(3)$$

On solving equations (2) and (3), we obtain $a^2 = 52$ and $b^2 = 13$.

Thus, the equation of the ellipse is $\frac{x^2}{52} + \frac{y^2}{13} = 1$ or $x^2 + 4y^2 = 52$