(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Exercise 13.1

Question 1:

Evaluate the Given $\lim_{x\to 3} x+3$ limit:

Answer 1: $\lim x + 3 = 3 + 3 = 6$

Question 2:

Evaluate the Given limit: 1im

$$\lim_{n \to \pi} \left(x - \frac{22}{7} \right)$$

Answer 2:

 $\lim_{x \to \pi} \left(x - \frac{22}{7} \right) = \left(\pi - \frac{22}{7} \right)$

Question 3:

Evaluate the Given limit: $\lim \pi r^2$

Answer 3:

 $\lim_{r\to 1}\pi r^2 = \pi \left(1\right)^2 = \pi$

Question 4:

Evaluate the Given limit: $\lim_{x\to 4} \frac{4x+3}{x-2}$

Answer 4:

 $\lim_{x \to 4} \frac{4x+3}{x-2} = \frac{4(4)+3}{4-2} = \frac{16+3}{2} = \frac{19}{2}$

Question 5:

Evaluate the Given limit: $\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x - 1}$

Answer 5:

 $\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x - 1} = \frac{(-1)^{10} + (-1)^5 + 1}{-1 - 1} = \frac{1 - 1 + 1}{-2} = -\frac{1}{2}$

www.tiwariacademy.com

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

 $\frac{0}{0}$

Question 6: Evaluate the

e the Given limit:
$$\lim_{x \to 0} \frac{(x+1)^3 - 1}{x}$$

Answer 6:

 $\lim_{x \to 0} \frac{(x+1)^{5} - 1}{x}$ Put x + 1 = y so that $y \to 1$ as $x \to 0$. Accordingly, $\lim_{x \to 0} \frac{(x+1)^{5} - 1}{x} = \lim_{y \to 1} \frac{y^{5} - 1}{y - 1}$ $= \lim_{y \to 1} \frac{y^{5} - 1^{5}}{y - 1}$ $= 5 \cdot 1^{5-1} \qquad \left[\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} = na^{n-1}\right]$ = 5

$$\therefore \lim_{x \to 0} \frac{\left(x+5\right)^5 - 1}{x} = 5$$

Question 7: Evaluate the Given limit: $\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$

Answer 7:

At x = 2, the value of the given rational function takes the form. $\therefore \lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(3x + 5)}{(x - 2)(x + 2)}$ $= \lim_{x \to 2} \frac{3x + 5}{x + 2}$ $= \frac{3(2) + 5}{2 + 2}$ $= \frac{11}{4}$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class - XI)

Question 8:

Evaluate the Given limit: $\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$

Answer 8:

0 At x = 2, the value of the given rational function takes the form.

 $\overline{0}$

$$\therefore \lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)(x^2 + 9)}{(x - 3)(2x + 1)}$$
$$= \lim_{x \to 3} \frac{(x + 3)(x^2 + 9)}{2x + 1}$$
$$= \frac{(3 + 3)(3^2 + 9)}{2(3) + 1}$$
$$= \frac{6 \times 18}{7}$$
$$= \frac{108}{7}$$

Question 9:

Evaluate the Given limit: $\lim_{x\to 0} \frac{ax+b}{cx+1}$

Answer 9:

 $\lim_{x \to 0} \frac{ax+b}{cx+1} = \frac{a(0)+b}{c(0)+1} = b$

Question 10:

Evaluate the Given limit: Ii

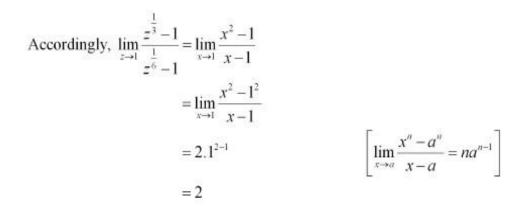
$$\lim_{x \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}$$

Answer 10:

 $\lim_{z \to 1} \frac{z^{\overline{3}} - 1}{z^{\frac{1}{6}} - 1}$ $\frac{0}{0}$ At z = 1, the value of the given function takes the form. Put $z^{\frac{1}{6}} = x$ so that $z \to 1$ as $x \to 1$.

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)



$$\therefore \lim_{z \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1} = 2$$

Question 11:

Evaluate the Given limit:

$$\lim_{x \to 1} \frac{ax^{2} + bx + c}{cx^{2} + bx + a}, a + b + c \neq 0$$

Answer 11:

$$\lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} = \frac{a(1)^2 + b(1) + c}{c(1)^2 + b(1) + a}$$
$$= \frac{a + b + c}{a + b + c}$$
$$= 1 \qquad [a + b + c \neq 0]$$

Question 12: $\frac{1}{x} + \frac{1}{2}$ Evaluate the Given limit: $\lim_{x \to -2} \frac{x}{x+2}$

Answer 12:

 $\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x+2}$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

0

At x = -2, the value of the given function takes the form. $\frac{0}{0}$

Now,
$$\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x+2} = \lim_{x \to -2} \frac{\left(\frac{2+x}{2x}\right)}{x+2}$$
$$= \lim_{x \to -2} \frac{1}{2x}$$
$$= \frac{1}{2(-2)} = \frac{-1}{4}$$

Question 13: Evaluate the Given limit:

 $\lim_{x\to 0}\frac{\sin ax}{bx}$

Answer 13:

$$\lim_{x \to 0} \frac{\sin ax}{bx}$$

At x = 0, the value of the given function takes the form $\frac{1}{0}$

Now,
$$\lim_{x \to 0} \frac{\sin ax}{bx} = \lim_{x \to 0} \frac{\sin ax}{ax} \times \frac{ax}{bx}$$
$$= \lim_{x \to 0} \left(\frac{\sin ax}{ax}\right) \times \left(\frac{a}{b}\right)$$
$$= \frac{a}{b} \lim_{ax \to 0} \left(\frac{\sin ax}{ax}\right) \qquad [x \to 0 \Rightarrow ax \to 0]$$
$$= \frac{a}{b} \times 1 \qquad \left[\lim_{y \to 0} \frac{\sin y}{y} = 1\right]$$
$$= \frac{a}{b}$$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 14:

Evaluate the Given limit:

 $\lim_{x \to 0} \frac{\sin ax}{\sin bx}, \ a, \ b \neq 0$

Answer 14:

 $\lim_{x\to 0}\frac{\sin ax}{\sin bx}, \ a, \ b\neq 0$

0 At X = 0, the value of the given function takes the form $\frac{3}{0}$

Question 15:

Evaluate the Given limit: $\lim_{x \to \pi} \frac{\sin(\pi - x)}{\pi(\pi - x)}$

$$\lim_{x\to\pi}\frac{\sin(\pi-x)}{\pi(\pi-x)}$$

It is seen that $x \to \pi \Rightarrow (\pi - x) \to 0$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

$$\therefore \lim_{x \to \pi} \frac{\sin(\pi - x)}{\pi(\pi - x)} = \frac{1}{\pi} \lim_{(\pi - x) \to 0} \frac{\sin(\pi - x)}{(\pi - x)}$$
$$= \frac{1}{\pi} \times 1 \qquad \qquad \left[\lim_{y \to 0} \frac{\sin y}{y} = 1 \right]$$
$$= \frac{1}{\pi}$$

Question 16:

Evaluate the given limit: $\lim_{t \to \infty} \frac{c}{c}$

 $\lim_{x\to 0}\frac{\cos x}{\pi-x}$

Answer 16:

	$\cos x$	$-\frac{\cos \theta}{2}$	_ 1
	$\overline{\pi - x}$		

Question 17:

Evaluate the Given limit: lim

 $\lim_{x\to 0}\frac{\cos 2x-1}{\cos x-1}$

Answer 17:

 $\lim_{x\to 0}\frac{\cos 2x-1}{\cos x-1}$

At x = 0, the value of the given function takes the form. $\frac{0}{0}$ Now,

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

$$\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1} = \lim_{x \to 0} \frac{1 - 2\sin^2 x - 1}{1 - 2\sin^2 \frac{x}{2} - 1} \qquad \left[\cos x = 1 - 2\sin^2 \frac{x}{2} \right]$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{\sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{\left(\frac{\sin^2 x}{x^2}\right) \times x^2}{\left(\frac{x}{2}\right)^2} \times \frac{x^2}{4}$$
$$= 4 \frac{\lim_{x \to 0} \left(\frac{\sin^2 x}{x^2}\right)}{\lim_{x \to 0} \left(\frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2}\right)}$$
$$= 4 \frac{\left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2}{\left(\frac{x}{2}\right)^2} \qquad \left[x \to 0 \Rightarrow \frac{x}{2} \to 0\right]$$
$$= 4 \frac{1^2}{1^2} \qquad \left[\lim_{x \to 0} \frac{\sin y}{y} = 1\right]$$
$$= 4$$

Question 18: Evaluate the Given limit:

 $\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Answer 18:

 $\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$

At x = 0, the value of the given function takes the form. $\frac{0}{0}$ Now,

$$\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} = \frac{1}{b} \lim_{x \to 0} \frac{x(a + \cos x)}{\sin x}$$
$$= \frac{1}{b} \lim_{x \to 0} \left(\frac{x}{\sin x}\right) \times \lim_{x \to 0} (a + \cos x)$$
$$= \frac{1}{b} \times \frac{1}{\left(\lim_{x \to 0} \frac{\sin x}{x}\right)} \times \lim_{x \to 0} (a + \cos x)$$
$$= \frac{1}{b} \times (a + \cos 0) \qquad \left[\lim_{x \to 0} \frac{\sin x}{x} = 1\right]$$
$$= \frac{a + 1}{b}$$

Question 19:

Evaluate the Given limit: $\lim_{x \to 0} x \sec x$

Answer 19:

$$\lim_{x \to 0} x \sec x = \lim_{x \to 0} \frac{x}{\cos x} = \frac{0}{\cos 0} = \frac{0}{1} = 0$$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 20:

Evaluate the Given limit:

 $\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx} \ a, b, a + b \neq 0$

Answer 20:

At x = 0, the value of the given function takes the form. $\frac{0}{0}$ Now,

$$\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}$$

$$= \lim_{x \to 0} \frac{\left(\frac{\sin ax}{ax}\right)ax + bx}{ax + bx\left(\frac{\sin bx}{bx}\right)}$$

$$= \frac{\left(\lim_{ax \to 0} \frac{\sin ax}{ax}\right) \times \lim_{x \to 0} (ax) + \lim_{x \to 0} bx}{\lim_{x \to 0} ax + \lim_{x \to 0} bx\left(\lim_{bx \to 0} \frac{\sin bx}{bx}\right)}$$

$$= \frac{\lim_{x \to 0} (ax) + \lim_{x \to 0} bx}{\lim_{x \to 0} ax + \lim_{x \to 0} bx}$$

$$= \frac{\lim_{x \to 0} (ax + bx)}{\lim_{x \to 0} (ax + bx)}$$

$$= \lim_{x \to 0} (1)$$

$$= 1$$

[As $x \to 0 \Rightarrow ax \to 0$ and $bx \to 0$]

$$\left[\lim_{x \to 0} \frac{\sin x}{x} = 1\right]$$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 21:

Evaluate the Given limit: $\lim_{x\to 0} (\operatorname{cosec} x - \operatorname{cot} x)$

Answer 21:

At x = 0, the value of the given function takes the form. $\infty - \infty$ Now, $\lim(\operatorname{cosec} x - \cot x)$

$$= \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right)$$

$$= \lim_{x \to 0} \left(\frac{1 - \cos x}{\sin x} \right)$$

$$= \lim_{x \to 0} \frac{\left(\frac{1 - \cos x}{\sin x} \right)}{\left(\frac{\sin x}{x} \right)}$$

$$= \frac{\lim_{x \to 0} \frac{1 - \cos x}{x}}{\lim_{x \to 0} \frac{\sin x}{x}}$$

$$= \frac{0}{1} \qquad \left[\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \text{ and } \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$

$$= 0$$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 22:

 $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}$

Answer 22:

 $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}$ $x = \frac{\pi}{2}$, the value of the given function takes the form 0 $\overline{0}$ $x - \frac{\pi}{2} = y$ so that $x \to \frac{\pi}{2}, y \to 0$ $\therefore \lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}} = \lim_{y \to 0} \frac{\tan 2\left(y + \frac{\pi}{2}\right)}{y}$ $=\lim_{y\to 0}\frac{\tan\left(\pi+2y\right)}{y}$ $= \lim_{y \to 0} \frac{\tan 2y}{y} \qquad \left[\tan \left(\pi + 2y \right) = \tan 2y \right]$ $=\lim_{y\to 0} \frac{\sin 2y}{y\cos 2y}$ $= \lim_{y \to 0} \left(\frac{\sin 2y}{2y} \times \frac{2}{\cos 2y} \right)$ $= \left(\lim_{2y \to 0} \frac{\sin 2y}{2y}\right) \times \lim_{y \to 0} \left(\frac{2}{\cos 2y}\right) \qquad \qquad [y \to 0 \Rightarrow 2y \to 0]$ $\left[\lim_{x \to 0} \frac{\sin x}{x} = 1\right]$ $=1\times\frac{2}{\cos\theta}$ $=1\times\frac{2}{1}$ = 2

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 23:

Find
$$\lim_{x \to 0} f(x) \text{ and } \lim_{x \to 1} f(x), \text{ where } f(x) = \begin{cases} 2x+3, & x \le 0\\ 3(x+1), & x > 0 \end{cases}$$

Answer 23:

The given function is
$$f(x) = \begin{cases} 2x+3, & x \le 0\\ 3(x+1), & x > 0 \end{cases}$$

 $\lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0} [2x+3] = 2(0) + 3 = 3$ $\lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0^{\circ}} 3(x+1) = 3(0+1) = 3$ $\therefore \lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0} f(x) = 3$ $\lim_{x \to 1^{\circ}} f(x) = \lim_{x \to 1} 3(x+1) = 3(1+1) = 6$ $\lim_{x \to 1^{\circ}} f(x) = \lim_{x \to 1} 3(x+1) = 3(1+1) = 6$ $\therefore \lim_{x \to 1^{\circ}} f(x) = \lim_{x \to 1^{\circ}} f(x) = \lim_{x \to 1^{\circ}} f(x) = 1$

Question 24:

Find $\lim_{x \to 1} f(x)$, where $f(x) = \begin{cases} x^2 - 1, & x \le 1 \\ -x^2 - 1, & x > 1 \end{cases}$

Answer 24:

The given function is

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

$$f(x) = \begin{cases} x^2 - 1, \ x \le 1 \\ -x^2 - 1, \ x > 1 \end{cases}$$

 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} \left[x^{2} - 1 \right] = 1^{2} - 1 = 1 - 1 = 0$ $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} \left[-x^{2} - 1 \right] = -1^{2} - 1 = -1 - 1 = -2$ It is observed that $\lim_{x \to 1^{+}} f(x) \neq \lim_{x \to 1^{+}} f(x).$

Hence, $\lim_{x \to 1} f(x)$ does not exist.

Question 25:

Evaluate
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$

Answer 25:

The given function is
$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\frac{|x|}{x} \right]$$

$$= \lim_{x \to 0} \left(\frac{-x}{x} \right)$$

$$= \lim_{x \to 0} \left(-1 \right)$$

$$= -1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\frac{|x|}{x} \right]$$

$$= \lim_{x \to 0} \left[\frac{x}{x} \right]$$

$$= \lim_{x \to 0} \left[\frac{x}{x} \right]$$

$$= \lim_{x \to 0} \left[1 \right)$$

$$= 1$$
It is observed that $\lim_{x \to 0^{+}} f(x) \neq \lim_{x \to 0^{+}} f(x)$.

It is observed that $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x)$. Hence, $\lim_{x\to 0} f(x)$ does not exist.

www.tiwariacademy.com

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 26:

Find
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$

Answer 26:

The given function is

$$f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left[\frac{x}{|x|} \right]$$
$$= \lim_{x \to 0} \left[\frac{x}{-x} \right]$$
$$[When x < 0, |x| = -x]$$
$$= \lim_{x \to 0} (-1)$$
$$= -1$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\frac{x}{|x|} \right]$$
$$= \lim_{x \to 0} \left[\frac{x}{x} \right]$$
$$[When x > 0, |x| = x]$$
$$= \lim_{x \to 0} (1)$$
$$= 1$$

It is observed that $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x)$. Hence, $\lim_{x\to 0} f(x)$ does not exist.

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 27:

Find $\lim_{x \to \infty} f(x)$, where f(x) = |x| - 5

Answer 27:

The given function is f(x) = |x| - 5. $\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} [|x| - 5]$ $= \lim_{x \to 5^{+}} (x - 5) \qquad [When x > 0, |x| = x]$ = 5 - 5 = 0 $\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} (|x| - 5)$ $= \lim_{x \to 5^{+}} (x - 5) \qquad [When x > 0, |x| = x]$ = 5 - 5 = 0 $\therefore \lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = 0$ Hence, $\lim_{x \to 5^{-}} f(x) = 0$

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 28:

Suppose
$$f(x) = \begin{cases} a + bx, & ifx < 1\\ 4, & ifx = 0\\ b - ax, & ifx > 1 \end{cases}$$

and $\lim_{x\to 1} f(x) = f(1)$ what are possible values of *a* and *b*?

Answer 28:

The given function is

$$f(x) = \begin{cases} a+bx, \ x < 1\\ 4, \ x = 1\\ b-ax \ x > 1 \end{cases}$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (a + bx) = a + b$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (b - ax) = b - a$$

$$f(1) = 4$$

It is given that
$$\lim_{x \to 1^{-}} f(x) = f(1).$$

$$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = f(1)$$

 $\Rightarrow a+b=4 \text{ and } b-a=4$

On solving these two equations, we obtain a = 0 and b = 4.

Thus, the respective possible values of *a* and *b* are 0 and 4.

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 29:

Let *a*₁, *a*₂, . . ., *an* be fixed real numbers and define a function

 $f(x) = (x - a_1) (x - a_2)...(x - a_n)$.

What is $\lim_{x \to a_1} f(x)$? For some $a \neq a_1, a_2... a_n$, compute $\lim_{x \to a} f(x)$.

Answer 29:

The given function is

$$f(x) = (x - a_1)(x - a_2)...(x - a_n)$$

$$\lim_{x \to a_1} f(x) = \lim_{x \to a_1} \left[(x - a_1)(x - a_2)...(x - a_n) \right]$$

$$= \left[\lim_{x \to a_1} (x - a_1) \right] \left[\lim_{x \to a_1} (x - a_2) \right] ... \left[\lim_{x \to a_1} (x - a_n) \right]$$

$$= (a_1 - a_1)(a_1 - a_2)...(a_1 - a_n) = 0$$

$$\therefore \lim_{x \to a_1} f(x) = 0$$
Now,
$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[(x - a_1)(x - a_2)...(x - a_n) \right]$$

$$= \left[\lim_{x \to a} (x - a_1) \right] \left[\lim_{x \to a} (x - a_2) \right] ... \left[\lim_{x \to a} (x - a_n) \right]$$

$$= (a - a_1)(a - a_2)...(a - a_n)$$

$$\therefore \lim_{x \to a} f(x) = (a - a_1)(a - a_2)...(a - a_n)$$

Question 30:

If
$$f(x) = \begin{cases} |x|+1, & x < 0\\ 0, & x = 0\\ |x|-1, & x > 0 \end{cases}$$

For what value(s) of a does $\lim_{x \to a} f(x)$ exists?

.

Answer 30:

The given function is

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

$$f(x) = \begin{cases} |x|+1, & x < 0\\ 0, & x = 0\\ |x|-1, & x > 0 \end{cases}$$

When
$$a = 0$$
,

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} (|x|+1)$$

$$= \lim_{x \to 0} (-x+1) \qquad [\text{If } x < 0, |x| = -x]$$

$$= -0+1$$

$$= 1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (|x|-1)$$

$$= \lim_{x \to 0} (x-1) \qquad [\text{If } x > 0, |x| = x]$$

$$= 0-1$$

$$= -1$$

Here, it is observed that $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$. $\therefore \lim_{x\to 0} f(x)$ does not exist. When a < 0, $\lim_{x\to a^-} f(x) = \lim_{x\to a^-} (|x|+1)$ $= \lim_{x\to a} (-x+1)$ $[x < a < 0 \Rightarrow |x| = -x]$ = -a+1 $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} (|x|+1)$ $= \lim_{x\to a^-} (-x+1)$ $[a < x < 0 \Rightarrow |x| = -x]$ = -a+1 $\therefore \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = -a+1$ Thus, limit of f(x) exists at x = a, where a < 0.

When a > 0

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

 $\lim_{x \to a^-} f(x) = \lim_{x \to a^-} (|x| - 1)$ $= \lim_{x \to a^+} (x - 1) \qquad \begin{bmatrix} 0 < x < a \Longrightarrow |x| = x \end{bmatrix}$ = a - 1 $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} (|x| - 1)$ $= \lim_{x \to a} (x - 1) \qquad \begin{bmatrix} 0 < a < x \Longrightarrow |x| = x \end{bmatrix}$ = a - 1 $\therefore \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = a - 1$

Thus, limit of f(x) exists at x = a, where a > 0.

Thus, $\lim_{x \to a} f(x)$ exists for all $a \neq 0$.

Question 31: If the function f(x) satisfies, $\lim_{x \to 1} \frac{f(x)-2}{x^2-1} = \pi$ evaluate $\lim_{x \to 1} f(x)$.

Answer 31:

$$\lim_{x \to 1} \frac{f(x) - 2}{x^2 - 1} = \pi$$

$$\Rightarrow \frac{\lim_{x \to 1} (f(x) - 2)}{\lim_{x \to 1} (x^2 - 1)} = \pi$$

$$\Rightarrow \lim_{x \to 1} (f(x) - 2) = \pi \lim_{x \to 1} (x^2 - 1)$$

$$\Rightarrow \lim_{x \to 1} (f(x) - 2) = \pi (1^2 - 1)$$

$$\Rightarrow \lim_{x \to 1} (f(x) - 2) = 0$$

$$\Rightarrow \lim_{x \to 1} f(x) - \lim_{x \to 1} 2 = 0$$

$$\Rightarrow \lim_{x \to 1} f(x) - 2 = 0$$

$$\therefore \lim_{x \to 1} f(x) = 2$$

www.tiwariacademy.com

(www.tiwariacademy.com : Focus on free Education) (Chapter – 13) (Limits and Derivatives)

(Class – XI)

Question 32:

lf.

 $f(x) = \begin{cases} mx^2 + n, & x < 0\\ nx + m, & 0 \le x \le 1 \\ nx^3 + m, & x > 1 \end{cases}$ For what integers *m* and *n* does

 $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$ exist?

Answer 32: The given function is

$$f(x) = \begin{cases} mx^{2} + n, & x < 0\\ nx + m, & 0 \le x \le 1\\ nx^{3} + m, & x > 1 \end{cases}$$
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (mx^{2} + n)$$
$$= m(0)^{2} + n$$
$$= n$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} (nx + m)$$
$$= n(0) + m$$
$$= m.$$

Thus, $\lim_{x\to 0} f(x)$ exists if m = n.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (nx + m)$$

= $n(1) + m$
= $m + n$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (nx^{3} + m)$$

= $n(1)^{3} + m$
= $m + n$
$$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x)$$

Thus $\lim_{x \to 1} f(x)$ exist for any integral value of m and n.

