Exercise 15.2

Ouestion 1:

Find the mean and variance for the data 6, 7, 10, 12, 13, 4, 8, 12

Answer

Mean,
$$\bar{x} = \frac{\sum_{i=1}^{8} x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$$

The following table is obtained.

x _i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
6	-3	9
7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

Variance
$$(\sigma^2) = \frac{1}{n} \sum_{i=1}^{8} (x_i - \bar{x})^2 = \frac{1}{8} \times 74 = 9.25$$

Question 2:

Find the mean and variance for the first n natural numbers

Answer

The mean of first *n* natural numbers is calculated as follows.

$$Mean = \frac{Sum of all observations}{Number of observations}$$

www.tiwariacademy.in

$$\begin{split} \therefore \text{Mean} &= \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2} \\ \text{Variance} \left(\sigma^2\right) = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} \left[x_i - \left(\frac{n+1}{2}\right)\right]^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2\left(\frac{n+1}{2}\right) x_i + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n+1}{2}\right)^2 \\ &= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{n}\right) \left[\frac{n(n+1)}{2}\right] + \frac{(n+1)^2}{4n} \times n \\ &= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{2} + \frac{(n+1)^2}{4} \\ &= \frac{(n+1)\left(2n+1\right)}{6} - \frac{(n+1)^2}{4} \\ &= (n+1) \left[\frac{4n+2-3n-3}{12}\right] \\ &= \frac{(n+1)(n-1)}{12} \\ &= \frac{n^2-1}{12} \end{split}$$

Question 3:

Find the mean and variance for the first 10 multiples of 3

Answer

The first 10 multiples of 3 are

Here, number of observations, n = 10

Mean,
$$\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{165}{10} = 16.5$$

The following table is obtained.

Xi	$\left(x_{i}^{-}\overline{x}\right)$	$\left(x_i - \overline{x}\right)^2$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

Variance
$$\left(\sigma^{2}\right) = \frac{1}{n} \sum_{i=1}^{10} (x_{i} - \overline{x})^{2} = \frac{1}{10} \times 742.5 = 74.25$$

Question 4:

Find the mean and variance for the data

хi	6	10	14	18	24	28	30
f i	2	4	7	12	8	4	3

Answer

The data is obtained in tabular form as follows.

		www.tiwariacau							
Xi	fi	f _i x _i	$x_i - x$	$\left(x_i - \overline{x}\right)^2$	$f_i \left(x_i - \overline{x}\right)^2$				
6	2	12	-13	169	338				
10	4	40	-9	81	324				
14	7	98	-5	25	175				
18	12	216	-1	1	12				
24	8	192	5	25	200				
28	4	112	9	81	324				
30	3	90	11	121	363				
	40	760			1736				

Here, N = 40,
$$\sum_{i=1}^{7} f_i X_i = 760$$

Here, N = 40,
$$\sum_{i=1}^{7} f_i x_i = 760$$

$$\therefore \overline{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{760}{40} = 19$$

Variance
$$= (\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} f_i (x_i - \overline{x})^2 = \frac{1}{40} \times 1736 = 43.4$$

Question 5:

Find the mean and variance for the data

хi	92	93	97	98	102	104	109
fi	3	2	3	2	6	3	3

Answer

The data is obtained in tabular form as follows.

	www.tiwaiiacau							
Xi	fi	f _i x _i	$x_i - x$	$\left(x_i - \overline{x}\right)^2$	$f_i \left(x_i - \overline{x} \right)^2$			
92	3	276	-8	64	192			
93	2	186	-7	49	98			
97	3	291	-3	9	27			
98	2	196	-2	4	8			
102	6	612	2	4	24			
104	3	312	4	16	48			
109	3	327	9	81	243			
	22	2200			640			

Here,
$$N = 22$$
, $\sum_{i=1}^{7} f_i x_i = 2200$

$$\therefore \overline{x} = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{1}{22} \times 2200 = 100$$

Variance
$$\left(\sigma^{2}\right) = \frac{1}{N} \sum_{i=1}^{7} f_{i} (x_{i} - \overline{x})^{2} = \frac{1}{22} \times 640 = 29.09$$

Question 6:

Find the mean and standard deviation using short-cut method.

Xi	60	61	62	63	64	65	66	67	68
f_i	2	1	12	29	25	12	10	4	5

Answer

The data is obtained in tabular form as follows.

			W W	<u>w.uw</u>	<u>arıac</u>
Xi	fi	$f_i = \frac{x_i - 64}{1}$	y _i ²	f _i y _i	$f_i y_i^2$
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean,
$$\bar{x} = A \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h = 64 + \frac{0}{100} \times 1 = 64 + 0 = 64$$

Variance,
$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - (\sum_{i=1}^{9} f_{i} y_{i})^{2} \right]$$
$$= \frac{1}{100^{2}} [100 \times 286 - 0]$$
$$= 2.86$$

$$\therefore$$
 S tan dard deviation (σ) = $\sqrt{2.86}$ = 1.69

Question 7:

Find the mean and variance for the following frequency distribution.

Classes 0-30 30-60 60-90 90-1	0 120-150 150-180 180-210
-------------------------------	---------------------------

				11 0 02 11 002 20			
Frequencies	2	3	5	10	3	5	2

Answer

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 105}{30}$	y _i ²	f _i y _i	$f_i y_i^2$
0-30	2	15	-3	9	-6	18
30-60	3	45	-2	4	-6	12
60-90	5	75	-1	1	-5	5
90-120	10	105	0	0	0	0
120-150	3	135	1	1	3	3
150-180	5	165	2	4	10	20
180-210	2	195	3	9	6	18
	30				2	76

Mean,
$$\overline{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 105 + \frac{2}{30} \times 30 = 105 + 2 = 107$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^7 f_i y_i^2 - \left(\sum_{i=1}^7 f_i y_i \right)^2 \right]$$

$$= \frac{(30)^2}{(30)^2} \left[30 \times 76 - (2)^2 \right]$$

$$= 2280 - 4$$

$$= 2276$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	0-10	10-20	20-30	30-40	40-50
Frequencies	5	8	15	16	6

Answer

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 25}{10}$	y _i ²	f _i y _i	f _i y _i ²
0-10	5	5	-2	4	-10	20
10-20	8	15	-1	1	-8	8
20-30	15	25	0	0	0	0
30-40	16	35	1	1	16	16
40-50	6	45	2	4	12	24
	50				10	68

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 25 + \frac{10}{50} \times 10 = 25 + 2 = 27$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^5 f_i y_i^2 - \left(\sum_{i=1}^5 f_i y_i \right)^2 \right]$$

$$= \frac{(10)^2}{(50)^2} \left[50 \times 68 - (10)^2 \right]$$

$$= \frac{1}{25} \left[3400 - 100 \right] = \frac{3300}{25}$$

$$= 132$$

Question 9:
Find the mean, variance and standard deviation using short-cut method

Height in cms	No. of children							
70-75	3							
75-80	4							
80-85	7							
85-90	7							
90-95	15							
95-100	9							
100 105								
100-105	6							
100-105	6	Answer		Mid-				
		Class Interva	Frequenc y f _i	Mid- poin	$y_i = \frac{x_i - 92.5}{5}$	y i 2	f _i y	<i>f_iy_i</i> 2
105-110	6	Class			$y_i = \frac{x_i - 92.5}{5}$			
105-110	6	Class Interva		poin	$y_{i} = \frac{x_{i} - 92.5}{5}$			
105-110	6	Class Interva	y <i>f</i> _i	poin t x_i	,	2	<i>i</i>	2
105-110	6	Class Interva I	y f _i	poin t <i>x</i> _i 72.5	-4	16	- 12	48
105-110	6	Class Interva I 70-75	y f _i 3	poin t <i>x_i</i> 72.5	-4 -3	16	- 12 - 12	48

www.tiwariacademy.com Focus on free education

	v.uwai iacac	acity .ii	1			
95-100	9	97.5	1	1	9	9
100-105	6	102. 5	2	4	12	24
105-110	6	107. 5	3	9	18	54
110-115	3	112. 5	4	16	12	48
	60				6	25 4

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h = 92.5 + \frac{6}{60} \times 5 = 92.5 + 0.5 = 93$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^9 f_i y_i^2 - \left(\sum_{i=1}^9 f_i y_i \right)^2 \right]$$

$$= \frac{(5)^2}{(60)^2} \left[60 \times 254 - (6)^2 \right]$$

$$= \frac{25}{3600} (15204) = 105.58$$

$$\therefore$$
 S tan dard deviation $(\sigma) = \sqrt{105.58} = 10.27$

Question 10:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
33-36	15
37-40	17
41-44	21

45-48	22
49-52	25

Answer

Class Interval	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 42.5}{4}$	f _i ²	f _i y _i	f _i y _i ²
32.5-36.5	15	34.5	-2	4	-30	60
36.5-40.5	17	38.5	-1	1	-17	17
40.5-44.5	21	42.5	0	0	0	0
44.5-48.5	22	46.5	1	1	22	22
48.5-52.5	25	50.5	2	4	50	100
	100				25	199

Here, N = 100, h = 4

Let the assumed mean, A, be 42.5.

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 42.5 + \frac{25}{100} \times 4 = 43.5$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^5 f_i y_i^2 - \left(\sum_{i=1}^5 f_i y_i \right)^2 \right]$$

$$= \frac{16}{10000} \left[100 \times 199 - (25)^2 \right]$$

$$= \frac{16}{10000} \left[19900 - 625 \right]$$

$$= \frac{16}{10000} \times 19275$$

$$= 30.84$$

 \therefore Standard deviation (σ) = 5.55