(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

Exercise 2.1

Question 1:

If

$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y.

Answer 1:

It is given that

$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore.
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \quad y - \frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2 \Rightarrow y = 1$$

$$x = 2$$
 and $y = 1$

Question 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Answer 2:

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

(www.tiwariacademy.com : A step towards free education)

(Chapter - 2) (Relations and Functions)

(Class - XI)

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

- = (Number of elements in A) \times (Number of elements in B)
- $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

Question 3:

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Answer 3:

$$G = \{7, 8\}$$
 and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as $P \times Q = \{(p, q): p \in P, q \in Q\}$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

- (i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.
- (ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.
- (iii) If $A = \{1, 2\}$, $B = \{3, 4\}$, then $A \times (B \cap \Phi) = \Phi$.

Answer 4:

- (i) False If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$
- (ii) True
- (iii) True

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

Question 5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

Answer 5:

It is known that for any non-empty set A, A \times A \times A is defined as A \times A \times A = {(a, b, c): a, b, $c \in$ A}

It is given that $A = \{-1, 1\}$

$$\therefore A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, 1, 1), (1, 1, 1)\}$$

Question 6:

If A \times B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.

Answer 6:

It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p, q): p \in P, q \in Q\}$

: A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Question 7:

Let $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

- (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- (ii) $A \times C$ is a subset of $B \times D$

Answer 7:

(i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

$$\therefore$$
 R.H.S. = (A × B) \cap (A × C) = Φ

∴ L.H.S. = R.H.S

Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: $A \times C$ is a subset of $B \times D$

$$A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$$

 $A \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$

We can observe that all the elements of set A \times C are the elements of set B \times D. Therefore, A \times C is a subset of B \times D.

Question 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Answer 8:

 $A = \{1, 2\}$ and $B = \{3, 4\}$

$$\therefore A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$$

 $\Rightarrow n(A \times B) = 4$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$.

Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are

$$\Phi$$
, $\{(1,3)\}$, $\{(1,4)\}$, $\{(2,3)\}$, $\{(2,4)\}$, $\{(1,3),(1,4)\}$, $\{(1,3),(2,3)\}$, $\{(1,3),(2,4)\}$, $\{(1,4),(2,3)\}$, $\{(1,4),(2,4)\}$, $\{(2,3),(2,4)\}$, $\{(1,3),(1,4),(2,3)\}$, $\{(1,3),(1,4),(2,4)\}$, $\{(1,3),(2,3),(2,4)\}$

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A \times B, find A and B, where x, y and z are distinct elements.

Answer 9:

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A×B.

We know that

A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of the ordered pair elements of A \times B.

x, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2,

it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

Answer 10:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$n(A) \times n(A) = 9$$

$$n(A) = 3$$

The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A×A.

We know that $A \times A = \{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set A \times A are (-1, -1), (-1, 1), (0, -1), (0, 0), (1, -1), (1, 0), and (1, 1).