(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

Exercise 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

- (i) $\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$
- (ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
- **(iii)** {(1, 3), (1, 5), (2, 5)}

Answer 1:

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$ (iii) $\{(1, 3), (1, 5), (2, 5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

- (i) f(x) = -|x|
- (ii) $f(x) = \sqrt{9 x^2}$

Answer 2:

(i)
$$f(x) = -|x|, x \in \mathbb{R}$$

We know that $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} -x, & \text{if } x \ge 0 \\ x, & \text{if } x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R} .

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

 \therefore The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x: -3 \le x \le 3\}$ or [-3, 3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3. .: The range of f(x) is $\{x: 0 \le x \le 3\}$ or [0, 3].

Question 3:

A function f is defined by f(x) = 2x - 5. Write down the values of

- (i) f(0),
- (ii) f(7),
- (iii) f(-3)

Answer 3:

The given function is f(x) = 2x - 5.

Therefore,

(i)
$$f(0) = 2 \times 0 - 5 = 0 - 5 = -5$$

(ii)
$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii)
$$f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Question 4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $f(C) = \frac{9C}{5} + 32$. Find

(i)
$$t(0)$$

(iv) The value of C, when t(C) = 212

Answer 4:

The given function is $f(C) = \frac{9C}{5} + 32$.

Therefore,

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

$$\Rightarrow \frac{9C}{5} = 180$$

$$\Rightarrow 9C = 180 \times 5$$

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions.

(i)
$$f(x) = 2 - 3x, x \in \mathbb{R}, x > 0.$$

(ii)
$$f(x) = x^2 + 2$$
, x, is a real number.

(iii)
$$f(x) = x$$
, x is a real number

Answer 5:

(i)
$$f(x) = 2 - 3x, x \in \mathbf{R}, x > 0$$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7				- 5.5			

(www.tiwariacademy.com : A step towards free education)

(Chapter – 2) (Relations and Functions)

(Class - XI)

Thus, it can be clearly observed that the range of *f* is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let
$$x > 0$$

$$\Rightarrow 3x > 0$$

$$\Rightarrow$$
 2 $-3x < 2$

$$\Rightarrow f(x) < 2$$

$$\therefore$$
Range of $f = (-\infty, 2)$

(ii)
$$f(x) = x^2 + 2$$
, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

X	0	±0.3	±0.8	±1	±2	±3	
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$

Alter:

Let x be any real

number. Accordingly,

$$x^2 \ge 0$$

$$\Rightarrow x^2 + 2 \ge 0 + 2$$

$$\Rightarrow x^2 + 2 \ge 2$$

$$\Rightarrow f(x) \geq 2$$

∴ Range of
$$f = [2, ∞)$$

(iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real

numbers. \therefore Range of $f = \mathbf{R}$