(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Exercise 3.4

Question 1:

Find the principal and general solutions of the equation $\tan x = \sqrt{3}$

Answer 1:

 $\tan x = \sqrt{3}$

It is known that $\tan \frac{\pi}{3} = \sqrt{3}$ and $\tan \left(\frac{4\pi}{3}\right) = \tan \left(\pi + \frac{\pi}{3}\right) = \tan \frac{\pi}{3} = \sqrt{3}$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{4\pi}{3}$.

Now, $\tan x = \tan \frac{\pi}{3}$ $\Rightarrow x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$ Therefore, the general solution is $x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$

Question 2:

Find the principal and general solutions of the equation $\sec x = 2$

Answer 2:

 $\sec x = 2$

It is known that
$$\sec \frac{\pi}{3} = 2$$
 and $\sec \frac{5\pi}{3} = \sec \left(2\pi - \frac{\pi}{3}\right) = \sec \frac{\pi}{3} = 2$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{5\pi}{3}$.

Now,
$$\sec x = \sec \frac{\pi}{3}$$

 $\Rightarrow \cos x = \cos \frac{\pi}{3}$ $\left[\sec x = \frac{1}{\cos x}\right]$
 $\Rightarrow x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Therefore, the general solution is $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$

Question 3:

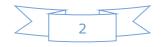
Find the principal and general solutions of the equation $\cot x = -\sqrt{3}$

Answer 3:

 $\cot x = -\sqrt{3}$ It is known that $\cot \frac{\pi}{6} = \sqrt{3}$ $\therefore \cot \left(\pi - \frac{\pi}{6}\right) = -\cot \frac{\pi}{6} = -\sqrt{3} \text{ and } \cot \left(2\pi - \frac{\pi}{6}\right) = -\cot \frac{\pi}{6} = -\sqrt{3}$ i.e., $\cot \frac{5\pi}{6} = -\sqrt{3} \text{ and } \cot \frac{11\pi}{6} = -\sqrt{3}$

Therefore, the principal solutions are $x = \frac{5\pi}{6}$ and $\frac{11\pi}{6}$. Now, $\cot x = \cot \frac{5\pi}{6}$ $\Rightarrow \tan x = \tan \frac{5\pi}{6}$ $\left[\cot x = \frac{1}{\tan x}\right]$ $\Rightarrow x = n\pi + \frac{5\pi}{6}$, where $n \in Z$

Therefore, the general solution is $x = n\pi + \frac{5\pi}{6}$, where $n \in \mathbb{Z}$



www.tiwariacademy.com

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Question 4:

Find the general solution of cosec x = -2

Answer 4:

 $\csc x = -2$

It is known that

$$\csc \frac{\pi}{6} = 2$$

$$\therefore \csc \left(\pi + \frac{\pi}{6}\right) = -\csc \frac{\pi}{6} = -2 \text{ and } \csc \left(2\pi - \frac{\pi}{6}\right) = -\csc \frac{\pi}{6} = -2$$

i.e.,
$$\csc \frac{7\pi}{6} = -2 \text{ and } \csc \frac{11\pi}{6} = -2$$

Therefore, the principal solutions are $x = \frac{7\pi}{6}$ and $\frac{11\pi}{6}$. Now, $\csc x = \csc \frac{7\pi}{6}$ $\Rightarrow \sin x = \sin \frac{7\pi}{6}$ $\left[\csc x = \frac{1}{\sin x} \right]$ $\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6}$, where $n \in \mathbb{Z}$

Therefore, the general solution is $x = n\pi + (-1)^n \frac{7\pi}{6}$, where $n \in \mathbb{Z}$

www.tiwariacademy.com

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Question 5:

Find the general solution of the equation $\cos 4x = \cos 2x$

Answer 5:

$$\cos 4x = \cos 2x$$

$$\Rightarrow \cos 4x - \cos 2x = 0$$

$$\Rightarrow -2\sin\left(\frac{4x + 2x}{2}\right)\sin\left(\frac{4x - 2x}{2}\right) = 0$$

$$\left[\because \cos A - \cos B = -2\sin\left(\frac{A + B}{2}\right)\sin\left(\frac{A - B}{2}\right)\right]$$

$$\Rightarrow \sin 3x \sin x = 0$$

$$\Rightarrow \sin 3x \sin x = 0$$

$$\Rightarrow \sin 3x = 0 \text{ or } \sin x = 0$$

$$\Rightarrow \sin 3x = n\pi \text{ or } x = n\pi, \text{ where } n \in \mathbb{Z}$$

$$\Rightarrow x = \frac{n\pi}{3} \text{ or } x = n\pi, \text{ where } n \in \mathbb{Z}$$

Question 6:

Find the general solution of the equation $\cos 3x + \cos x - \cos 2x = 0$

Answer 6:

 $\begin{aligned} \cos 3x + \cos x - \cos 2x &= 0 \\ \Rightarrow 2\cos\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right) - \cos 2x &= 0 \quad \left[\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right] \\ \Rightarrow 2\cos 2x\cos x - \cos 2x &= 0 \\ \Rightarrow \cos 2x(2\cos x - 1) &= 0 \\ \Rightarrow \cos 2x &= 0 \quad \text{or} \quad 2\cos x - 1 &= 0 \\ \Rightarrow \cos 2x &= 0 \quad \text{or} \quad \cos x &= \frac{1}{2} \\ \therefore 2x &= (2n+1)\frac{\pi}{2} \quad \text{or} \quad \cos x &= \cos\frac{\pi}{3}, \text{ where } n \in \mathbb{Z} \\ \Rightarrow x &= (2n+1)\frac{\pi}{4} \quad \text{or} \quad x &= 2n\pi \pm \frac{\pi}{3}, \text{ where } n \in \mathbb{Z} \end{aligned}$

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Question 7:

Find the general solution of the equation $\sin 2x + \cos x = 0$

Answer 7:

 $\sin 2x + \cos x = 0$ $\Rightarrow 2\sin x \cos x + \cos x = 0$ $\Rightarrow \cos x (2\sin x + 1) = 0$ $\Rightarrow \cos x = 0 \quad \text{or} \qquad 2\sin x + 1 = 0$ Now, $\cos x = 0 \Rightarrow \cos x = (2n+1)\frac{\pi}{2}, \text{ where } n \in \mathbb{Z}$ $2\sin x + 1 = 0$ $\Rightarrow \sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\frac{7\pi}{6}$ $\Rightarrow x = n\pi + (-1)^{n} \frac{7\pi}{6}, \text{ where } n \in \mathbb{Z}$

Therefore, the general solution is $(2n+1)\frac{\pi}{2}$ or $n\pi + (-1)^n \frac{7\pi}{6}$, $n \in \mathbb{Z}$

5	K

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Question 8:

Find the general solution of the equation $\sec^2 2x = 1 - \tan 2x$

Answer 8:

 $\sec^2 2x = 1 - \tan 2x$ \Rightarrow 1+tan² 2x = 1-tan 2x $\Rightarrow \tan^2 2x + \tan 2x = 0$ $\Rightarrow \tan 2x(\tan 2x+1) = 0$ $\Rightarrow \tan 2x = 0$ or $\tan 2x + 1 = 0$

Now,
$$\tan 2x = 0$$

 $\Rightarrow \tan 2x = \tan 0$
 $\Rightarrow 2x = n\pi + 0$, where $n \in Z$
 $\Rightarrow x = \frac{n\pi}{2}$, where $n \in Z$
 $\tan 2x + 1 = 0$
 $\Rightarrow \tan 2x = -1 = -\tan \frac{\pi}{4} = \tan \left(\pi - \frac{\pi}{4} \right) = \tan \frac{3\pi}{4}$
 $\Rightarrow 2x = n\pi + \frac{3\pi}{4}$, where $n \in Z$
 $\Rightarrow x = \frac{n\pi}{2} + \frac{3\pi}{8}$, where $n \in Z$

Therefore, the general solution is $\frac{n\pi}{2}$ or $\frac{n\pi}{2} + \frac{3\pi}{8}$, $n \in \mathbb{Z}$

www.tiwariacademy.com

(<u>www.tiwariacademy.com</u> : A step towards free education) (Chapter – 3) (Trigonometric Functions)

(Class – XI)

Question 9:

Find the general solution of the equation $\sin x + \sin 3x + \sin 5x = 0$

Answer 9:

 $\sin x + \sin 3x + \sin 5x = 0$

$$(\sin x + \sin 5x) + \sin 3x = 0$$

$$\Rightarrow \left[2\sin\left(\frac{x+5x}{2}\right)\cos\left(\frac{x-5x}{2}\right) \right] + \sin 3x = 0$$

$$\Rightarrow 2\sin 3x \cos(-2x) + \sin 3x = 0$$

$$\Rightarrow 2\sin 3x \cos 2x + \sin 3x = 0$$

$$\Rightarrow \sin 3x (2\cos 2x + 1) = 0$$

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

Now, $\sin 3x = 0 \Rightarrow 3x = n\pi$, where $n \in \mathbb{Z}$

 $\Rightarrow \sin 3x = 0$ or $2\cos 2x + 1 = 0$

i.e.,
$$x = \frac{n\pi}{3}$$
, where $n \in Z$
 $2\cos 2x + 1 = 0$
 $\Rightarrow \cos 2x = \frac{-1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right)$
 $\Rightarrow \cos 2x = \cos\frac{2\pi}{3}$
 $\Rightarrow 2x = 2n\pi \pm \frac{2\pi}{3}$, where $n \in Z$
 $\Rightarrow x = n\pi \pm \frac{\pi}{3}$, where $n \in Z$

Therefore, the general solution is $\frac{n\pi}{3}$ or $n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$

