



- Mathematics XII
- Exercise 1.3

Tiwari Academy
www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Exercise 1.3

Question 1:

Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.

Answer 1:

The functions $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ are defined as $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$.

$$gof(1) = g[f(1)] = g(2) = 3$$

[as
$$f(1) = 2$$
 and $g(2) = 3$]

$$gof(3) = g[f(3)] = g(5) = 1$$

$$[as f(3) = 5 \text{ and } g(5) = 1]$$

$$gof(4) = g[f(4)] = g(1) = 3$$

[as
$$f(4) = 1$$
 and $g(1) = 3$]

$$\therefore gof = \{(1, 3), (3, 1), (4, 3)\}$$

Question 2:

Let f, g and h be functions from \mathbf{R} to \mathbf{R} . Show that

$$(f+g)oh = foh + goh$$

 $(f.g)oh = (foh).(goh)$

Enanti Answer 2:

To prove: (f + g)oh = foh + goh

$$LHS = [(f+g)oh](x)$$

$$= (f+g)[h(x)]$$

$$= f[h(x)] + g[h(x)]$$

$$= (foh)(x) + (goh)(x)$$

$$= \{(foh)(x) + (goh)\}(x) = RHS$$

$$\therefore \{(f+g)oh\}(x) = \{(foh)(x) + (goh)\}(x) \qquad \text{for all } x \in \mathbf{R}$$

Hence, (f + g)oh = foh + goh

www.tiwariacademy.com
A Free web support in Education

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

To Prove: (f.g)oh = (foh).(goh)

$$LHS = [(f.g)oh](x)$$

$$= (f.g)[h(x)]$$

$$= f[h(x)] \cdot g[h(x)]$$

$$= (foh)(x) \cdot (goh)(x)$$

$$= \{(foh).(goh)\}(x) = RHS$$

$$\therefore [(f.g)oh](x) = \{(foh).(goh)\}(x)$$

for all $x \in \mathbf{R}$

Hence, (f.g)oh = (foh).(goh)

Question 3:

Find gof and fog, if

(i)
$$f(x) = |x|$$
 and $g(x) = |5x - 2|$

(ii)
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

Answer 3:

(i).
$$f(x) = |x|$$
 and $g(x) = |5x-2|$

$$gof(x) = g(f(x)) = g(|x|) = |5|x|-2|$$

$$fog(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|$$

(ii).
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

$$\therefore gof(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x$$

$$fog(x) = f(g(x)) = f(x^{\frac{1}{3}}) = 8(x^{\frac{1}{3}})^3 = 8x$$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Question 4:

If $f(x) = \frac{(4x+3)}{(6x-4)}$, $x \neq \frac{2}{3}$, show that $f\circ f(x) = x$, for all $x \neq \frac{2}{3}$. What is the inverse of f?

Answer 4:

It is given that $f(x) = \frac{(4x+3)}{(6x-4)}$, $x \neq \frac{2}{3}$

$$(fof)(x) = f(f(x)) = f(\frac{4x+3}{6x-4}) = \frac{4(\frac{4x+3}{6x-4}) + 3}{6(\frac{4x+3}{6x-4}) - 4}$$
$$= \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34}$$
$$= x$$

$$\therefore fof(x) = x, \text{ for all } x \neq \frac{2}{3}.$$

$$\Rightarrow f \circ f = I_x$$

Hence, the given function f is invertible and the inverse of f is f itself.

Question 5:

State with reason whether following functions have inverse

- (i) $f: \{1, 2, 3, 4\} \rightarrow \{10\} \text{ with }$ $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$
- (ii) $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\} \text{ with }$ $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$
- (iii) $h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ with $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Answer 5:

(i) $f: \{1, 2, 3, 4\} \rightarrow \{10\}$ defined as $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$

From the given definition of f, we can see that f is a many one function as

$$f(1) = f(2) = f(3) = f(4) = 10$$

 $\therefore f$ is not one – one.

Hence, function f does not have an inverse.

(ii)
$$g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$$
 defined as $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$

From the given definition of g, it is seen that g is a many one function as g(5) = g(7) = 4.

 \therefore g is not one – one.

Hence, function g does not have an inverse.

(iii)
$$h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 defined as $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$

It is seen that all distinct elements of the set $\{2, 3, 4, 5\}$ have distinct images under h.

 \therefore Function h is one – one.

Also, h is onto since for every element y of the set $\{7, 9, 11, 13\}$, there exists an element x in the set $\{2, 3, 4, 5\}$, such that h(x) = y.

Thus, h is a one – one and onto function.

Hence, h has an inverse.

Question 6:

Show that $f: [-1, 1] \to \mathbf{R}$, given by $f(x) = \frac{x}{(x+2)}$ is one – one. Find the inverse of the function $f: [-1, 1] \to \text{Range } f$.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

(Hint: For $y \in \text{Range } f$, $y = f(x) = \frac{x}{(x+2)}$, for some x in [-1, 1], i.e., $x = \frac{2y}{(1-y)}$

Answer 6:

$$f: [-1, 1] \rightarrow R$$
 is given as $f(x) = \frac{x}{(x+2)}$

For one – one

Let
$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$$

$$\Rightarrow xy + 2x = xy + 2y$$

$$\Rightarrow 2x = 2y$$

$$\Rightarrow x = y$$

 $\therefore f$ is a one – one function.

It is clear that $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto.}$

∴ f: $[-1, 1] \to \text{Range } f$ is one – one and onto and therefore, the inverse of the function f: $[-1, 1] \to \text{Range } f$ exists.

Let $g: \text{Range } f \rightarrow [-1, 1]$ be the inverse of f.

Let y be an arbitrary element of range f.

Since $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto, we have}$

y = f(x) for some $x \in [-1, 1]$

$$\Rightarrow$$
 y = $\frac{x}{x+2}$

$$\Rightarrow$$
 xy + 2y = x

$$\Rightarrow$$
 x(1-y) = 2y

$$\Rightarrow x = \frac{2y}{1-y} \; , \quad y \neq 1$$

Now, let us define g: Range $f \rightarrow [-1, 1]$ as

$$g(y) = \frac{2y}{1-y}, \quad y \neq 1$$

Now,

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

$$(gof)(x) = g(f(x)) = g(\frac{x}{x+2}) = \frac{2(\frac{x}{x+2})}{1-(\frac{x}{x+2})} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$

and

$$(fog)(y) = f(g(y)) = f(\frac{2y}{1-y}) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y} + 2} = \frac{2y}{2y + 2-2y} = \frac{2y}{2} = y$$

$$\therefore$$
 gof = x = $I_{[-1,1]}$ and fog = y = $I_{Range\ f}$

$$: f^{-1} = g$$

$$\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, \quad y \neq 1$$

Question 7:

Consider $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer 7:

$$f: \mathbf{R} \to \mathbf{R}$$
 is given by, $f(x) = 4x + 3$

For one – one

$$\operatorname{Let} f(x) = f(y)$$

$$\Rightarrow$$
 4 x + 3 = 4 y + 3

$$\Rightarrow 4x = 4y$$

$$\Rightarrow x = y$$

 $\therefore f$ is a one – one function.

For onto

For $y \in \mathbf{R}$, let y = 4x + 3.

$$\Rightarrow$$
 x = $\frac{y-3}{4} \in \mathbf{R}$

Therefore, for any $y \in \mathbb{R}$, there exists $x = \frac{y-3}{4} \in \mathbb{R}$, such that

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y.$$

 $\therefore f$ is onto.

Thus, f is one – one and onto and therefore, f^{-1} exists.

Let us define g: $\mathbf{R} \to \mathbf{R}$ by $g(x) = \frac{y-3}{4}$

Now,

$$(gof)(x) = g(f(x)) = g(4x + 3) = \frac{(4x + 3)-3}{4} = \frac{4x}{4} = x$$

and

$$(fog)(y) = f(g(y)) = f(\frac{y-3}{4}) = 4(\frac{y-3}{4}) + 3 = y-3 + 3 = y$$

$$\therefore$$
 gof = fog = I_R

Hence, f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) = \frac{y^{-3}}{4}$.

Question 8:

Consider $f: \mathbf{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$, where \mathbf{R}_+ is the set of all nonnegative real numbers.

Answer 8:

$$f: \mathbf{R}_+ \to [4, \infty)$$
 is given as $f(x) = x^2 + 4$.

For one – one

Let
$$f(x) = f(y)$$

$$\Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow$$
 $x^2 = y^2$

$$\Rightarrow$$
 x = y

$$[as x = y \in \mathbf{R}_+]$$

 $\therefore f$ is a one – one function.

For onto

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

For $y \in [4, \infty)$, let $y = x^2 + 4$

$$\Rightarrow x^2 = y - 4 \ge 0$$

[as
$$y \ge 4$$
]

$$\Rightarrow$$
 x = $\sqrt{y-4} \ge 0$

Therefore, for any $y \in [4, \infty)$, there exists $x = \sqrt{y-4} \in R_+$, such that

$$f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y-4 + 4 = y$$

 $\therefore f$ is onto.

Thus, f is one – one and onto and therefore, f^{-1} exists.

Let us define g: $[4, \infty) \to R_+$ by $g(y) = \sqrt{y-4}$

Now,

$$(gof)(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$$

and

$$(fog)(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y-4 + 4 = y$$

$$\therefore$$
 gof = fog = I_R

Hence, f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) = \sqrt{y-4}$

Question 9:

Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{(\sqrt{y+6})-1}{3}\right)$

Answer 9:

$$f: R_+ \to [-5, \infty)$$
 is given as $f(x) = 9x^2 + 6x - 5$.

Let y be an arbitrary element of $[-5, \infty)$.

Let
$$y = 9x^2 + 6x - 5$$

$$\Rightarrow$$
 y = $(3x + 1)^2 - 1 - 5 = (3x + 1)^2 - 6$

$$\Rightarrow$$
 y + 6 = $(3x + 1)^2$

$$\Rightarrow 3x + 1 = \sqrt{y + 6}$$

[as
$$y \ge -5 \Rightarrow y + 6 > 0$$
]

8

www.tiwariacademy.com
A Free web support in Education

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

$$\Rightarrow x = \frac{(\sqrt{y+6})-1}{3}$$

 $\therefore f$ is onto, thereby range $f = [-5, \infty)$.

Let us define g: $[-5, \infty) \to R_+$ as $g(y) = \frac{(\sqrt{y+6})-1}{3}$

Now,

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x-5) = g((3x + 1)^{2}-6)$$
$$= \sqrt{(3x + 1)^{2}-6 + 6}-1$$
$$= \frac{3x + 1-1}{3} = \frac{3x}{3} = x$$

and

$$(fog)(y) = f(g(y)) = f(\frac{\sqrt{y+6-1}}{3}) = \left[3\left(\frac{\sqrt{y+6-1}}{3}\right) + 1\right]^2 - 6$$
$$= (\sqrt{y+6})^2 - 6 = y + 6 - 6 = y$$

$$\therefore$$
 gof = x = I_R and fog = y = I_{Range f}

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \left(\frac{\left(\sqrt{y+6}\right) - 1}{3}\right)$$

Question 10:

Let $f: X \to Y$ be an invertible function. Show that f has unique inverse. (Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $f \circ g_1(y) = I_Y(y) = f \circ g_2(y)$. Use one – one ness of f).

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Answer 10:

Let $f: X \to Y$ be an invertible function.

Also, suppose f has two inverses (sayg₁ and g₂)

Then, for all $y \in Y$, we have

$$fog_1(y) = I_Y(y) = fog_2(y)$$

$$\Rightarrow f(g_1(y)) = f(g_2(y))$$

$$\Rightarrow$$
 g₁(y) = g₂(y)

[as f is invertible \Rightarrow f is one – one]

$$\Rightarrow g_1 = g_2$$

[as g is one – one]

Hence, f has a unique inverse.

Question 11:

Consider $f: \{1, 2, 3\} \to \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

Answer 11:

Function $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ is given by f(1) = a, f(2) = b, and f(3) = c

If we define $g: \{a, b, c\} \to \{1, 2, 3\}$ as g(a) = 1, g(b) = 2, g(c) = 3.

We have

$$(fog)(a) = f(g(a)) = f(1) = a$$

$$(fog)(b) = f(g(b)) = f(2) = b$$

$$(fog)(c) = f(g(c)) = f(3) = c$$

and

$$(gof)(1) = g(f(1)) = f(a) = 1$$

$$(gof)(2) = g(f(2)) = f(b) = 2$$

$$(gof)(3) = g(f(3)) = f(c) = 3$$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

∴ gof = I_X and fog = I_Y , where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Thus, the inverse of f exists and $f^{-1} = g$.

:
$$f^{-1}$$
: $\{a, b, c\} \rightarrow \{1, 2, 3\}$ is given by $f^{-1}(a) = 1, f^{-1}(b) = 2, f^{-1}(c) = 3$

Let us now find the inverse of f^{-1} i.e., find the inverse of g.

If we define $h: \{1, 2, 3\} \to \{a, b, c\}$ as h(1) = a, h(2) = b, h(3) = c

We have

$$(goh)(1) = g(h(1)) = g(a) = 1$$

$$(goh)(2) = g(h(2)) = g(b) = 2$$

$$(goh)(3) = g(h(3)) = g(c) = 3$$

and

$$(hog)(a) = h(g(a)) = h(1) = a$$

$$(hog)(b) = h(g(b)) = h(2) = b$$

$$(hog)(c) = h(g(c)) = h(3) = c$$

 $\therefore \text{ goh} = I_X \text{ and hog} = I_Y, \text{ where } X = \{1, 2, 3\} \text{ and } Y = \{a, b, c\}.$

Thus, the inverse of g exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$.

It can be noted that h = f.

Hence, $(f^{-1})^{-1} = f$.

Question 12:

Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f$.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Answer 12:

Let $f: X \to Y$ be an invertible function.

Then, there exists a function g: $Y \rightarrow X$ such that $gof = I_X$ and $fog = I_Y$.

Here, $f^{-1} = g$.

Now, $gof = I_X$ and $fog = I_Y$

 $\Rightarrow f^{-1} \circ f = I_X \text{ and } f \circ f^{-1} = I_Y$

Hence, f^{-1} : $Y \to X$ is invertible and f is the inverse of f^{-1} i.e., $(f^{-1})^{-1} = f$.

Question 13:

If $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then $f \circ f(x)$ is

$$(A)\,\frac{1}{x^3}$$

(B)
$$x^3$$

(D)
$$(3 - x^3)$$

Answer 13:

 $f: \mathbf{R} \to \mathbf{R}$ be given as $f(x) = (3-x^3)^{\frac{1}{3}}$

$$\therefore \text{ fof}(x) = x$$

The correct answer is C.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Question 14: Let f: R- $\left\{-\frac{4}{3}\right\} \to \mathbb{R}$ be a function as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g: Range f $\to \mathbb{R}$ - $\left\{-\frac{4}{3}\right\}$ given by

(A)
$$g(y) = \frac{3y}{3-4y}$$

(B)
$$g(y) = \frac{4y}{4-3y}$$

(C)
$$g(y) = \frac{4y}{3-4y}$$

(D)
$$g(y) = \frac{3y}{4-3y}$$

Answer 14:

It is given that $f: \mathbf{R} - \left\{-\frac{4}{3}\right\} \to \mathbf{R}$ be a function as $f(x) = \frac{4x}{3x+4}$

Let y be an arbitrary element of Range f.

Then, there exists $x \in \mathbb{R} - \left\{-\frac{4}{3}\right\}$ such that y = f(x)

$$\Rightarrow y = \frac{4x}{3x + 4}$$

$$\Rightarrow 3xy + 4y = 4x$$

$$\Rightarrow$$
 x(4-3y) = 4y

$$\Rightarrow x = \frac{4y}{4-3y}$$

Let us define g: Range $f \to R - \left\{ -\frac{4}{3} \right\}$ as $g(y) = \frac{4y}{4-3y}$

Now,

$$gof(x) = g(f(x)) = g\left(\frac{4x}{3x+4}\right) = \frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)}$$
$$= \frac{16x}{12x+16-12x} = \frac{16x}{16} = x$$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

and

$$fog(y) = f(g(y)) = f\left(\frac{4y}{4 - 3y}\right) = \frac{4\left(\frac{4y}{4 - 3y}\right)}{3\left(\frac{4y}{4 - 3y}\right) + 4}$$
$$= \frac{16y}{12y + 16 - 12y} = \frac{16y}{16} = y$$

$$\therefore$$
 gof = $I_{R-\left\{\frac{-4}{3}\right\}}$ and fog = $I_{Range\ f}$

Thus, g is the inverse of f i.e., $f^{-1} = g$.

Hence, the inverse of f is the map g: Range $f \to R - \left\{-\frac{4}{3}\right\}$, which is given by $g(y) = \frac{4y}{4 - 3y}$.

The correct answer is B.