

- Mathematics XII
- Exercise 1.4

Tiwari Academy
www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Exercise 1.4

Question 1:

Determine whether or not each of the definition of given below gives a binary operation.

In the event that * is not a binary operation, give justification for this.

- (i) On **Z**⁺, define * by a * b = a b
- (ii) On \mathbb{Z}^+ , define * by a * b = ab
- (iii)On **R**, define * by $a * b = ab^2$
- (iv) On **Z**⁺, define * by a * b = |a b|
- (v) On **Z**⁺, define * by a * b = a

Answer 1:

(i) On \mathbb{Z}^+ , * is defined by a * b = a - b.

It is not a binary operation

as the image of (1, 2) under * is 1 * 2 = $1 - 2 = -1 \notin \mathbb{Z}^+$.

(ii) On \mathbb{Z}^+ , * is defined by a * b = ab.

It is seen that for each $a, b \in \mathbb{Z}^+$, there is a unique element ab in \mathbb{Z}^+ .

This means that * carries each pair (a, b) to a unique element a * b = ab in \mathbb{Z}^+ .

Therefore, * is a binary operation.

(iii)On **R**, * is defined by $a * b = ab^2$.

It is seen that for each $a, b \in \mathbf{R}$, there is a unique element ab^2 in \mathbf{R} .

This means that * carries each pair (a, b) to a unique element $a * b = ab^2$ in **R**.

Therefore, * is a binary operation.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

(iv) On **Z**⁺, * is defined by
$$a * b = |a - b|$$
.

It is seen that for each $a, b \in \mathbb{Z}^+$, there is a unique element |a - b| in \mathbb{Z}^+ .

This means that * carries each pair (a, b) to a unique element a * b = |a - b| in \mathbb{Z}^+ .

Therefore, * is a binary operation.

(v) On \mathbb{Z}^+ , * is defined by a * b = a.

It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element a in \mathbf{Z}^+ .

This means that * carries each pair (a, b) to a unique element a * b = a in \mathbb{Z}^+ .

Therefore, * is a binary operation.

Question 2:

For each binary operation * defined below, determine whether * is commutative or associative.

- (i) On **Z**, define a * b = a b
- (ii) On **Q**, define a * b = ab + 1
- (iii) On **Q**, define $a * b = \frac{ab}{2}$
- (iv) On \mathbb{Z}^+ , define $a * b = 2^{ab}$
- (v) On **Z**⁺, define $a * b = a^b$
- (vi) On **R** {-1}, define $a * b = \frac{a}{b+1}$

Answer 2:

(i) On **Z**, * is defined by a * b = a - b.

It can be observed that 1 * 2 = 1 - 2 = -1 and 2 * 1 = 2 - 1 = 1.

 \therefore 1 * 2 \neq 2 * 1, where 1, 2 \in \mathbb{Z}

Hence, the operation * is not commutative.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Also, we have

$$(1*2)*3 = (1-2)*3 = -1*3 = -1-3 = -4$$

$$1*(2*3) = 1*(2-3) = 1*-1 = 1 - (-1) = 2$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Z}

Hence, the operation * is not associative.

(ii) On **Q**, * is defined by a * b = ab + 1.

It is known that: ab = ba for all $a, b \in \mathbf{Q}$

$$\Rightarrow ab + 1 = ba + 1$$
 for all $a, b \in \mathbf{Q}$

$$\Rightarrow a * b = a * b$$
 for all $a, b \in \mathbf{Q}$

Therefore, the operation * is commutative.

It can be observed that

$$(1*2)*3 = (1 \times 2 + 1)*3 = 3*3 = 3 \times 3 + 1 = 10$$

$$1*(2*3) = 1*(2 \times 3 + 1) = 1*7 = 1 \times 7 + 1 = 8$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Q}

Therefore, the operation * is not associative.

(iii) On **Q**, * is defined by
$$a * b = \frac{ab}{2}$$

It is known that: ab = ba for all $a, b \in \mathbf{Q}$

$$\Rightarrow \frac{ab}{2} = \frac{ba}{2}$$
 for all $a, b \in \mathbf{Q}$

$$\Rightarrow a * b = b * a \text{ for all } a, b \in \mathbf{Q}$$

Therefore, the operation * is commutative.

For all $a, b, c \in \mathbf{Q}$, we have

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$

and

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

$$a*(b*c) = a*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$

$$\therefore$$
 (a*b)*c = a*(b*c), where a, b, c \in **Q**

Therefore, the operation * is associative.

(iv) On
$$\mathbb{Z}^+$$
, * is defined by $a * b = 2^{ab}$.

It is known that: ab = ba for all $a, b \in \mathbf{Z}^+$

$$\Rightarrow 2^{ab} = 2^{ba}$$
 for all $a, b \in \mathbf{Z}^+$

$$\Rightarrow a * b = b * a \text{ for all } a, b \in \mathbf{Z}^+$$

Therefore, the operation * is commutative.

It can be observed that

$$(1*2)*3 = 2^{1\times 2}*3 = 4*3 = 2^{4\times 3} = 2^{12}$$
 and

$$1 * (2 * 3) = 1 * 2^{2 \times 3} = 1 * 2^{6} = 1 * 64 = 2^{1 \times 64} = 2^{64}$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Z}^+

Therefore, the operation * is not associative.

(v) On
$$\mathbb{Z}^+$$
, * is defined by $a * b = a^b$.

It can be observed that

$$1*2 = 1^2 = 1$$
 and $2*1 = 2^1 = 2$

:
$$1 * 2 \neq 2 * 1$$
, where $1, 2 \in \mathbb{Z}^+$

Therefore, the operation * is not commutative.

It can also be observed that

$$(2*3)*4 = 2^3*4 = 8*4 = 8^4 = 2^{12}$$
 and

$$2 * (3 * 4) = 2 * 3^4 = 2 * 81 = 2^{81}$$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

$$\therefore$$
 (2 * 3) * 4 \neq 2 * (3 * 4), where 2, 3, 4 \in \mathbb{Z}^+

Therefore, the operation * is not associative.

(vi) On **R**, * - {-1} is defined by
$$a * b = \frac{a}{b+1}$$

It can be observed that

$$1*2 = \frac{1}{2+1} = \frac{1}{3}$$
 and $2*1 = \frac{2}{1+1} = \frac{2}{2} = 1$

$$1 * 2 \neq 2 * 1$$
, where $1, 2 \in \mathbf{R} - \{-1\}$

Therefore, the operation * is not commutative.

It can also be observed that

$$(1*2)*3 = \frac{1}{2+1}*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$$

and

$$1*(2*3) = 1*\frac{2}{3+1} = 1*\frac{2}{4} = 1*\frac{1}{2} = \frac{1}{\frac{1}{2}+1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in **R** - {-1}

Therefore, the operation * is not associative.

Question 3:

Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by $a \land b = \min\{a, b\}$.

Write the operation table of the operation Λ .

Answer 3:

The binary operation \land on the set $\{1, 2, 3, 4, 5\}$ is defined as $a \land b = \min \{a, b\}$ for all $a, b \in \{1, 2, 3, 4, 5\}$.

Thus, the operation table for the given operation Λ can be given as:

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

٨	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Question 4:

Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

- (i) Compute (2 * 3) * 4 and 2 * (3 * 4)
- (ii) Is * commutative?
- (iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Answer 4:

- (i) (2 * 3) * 4 = 1 * 4 = 12 * (3 * 4) = 2 * 1 = 1
- (ii) For every $a, b \in \{1, 2, 3, 4, 5\}$, we have a * b = b * a. Therefore, the operation * is commutative.
- (iii) (2 * 3) = 1 and (4 * 5) = 1 $\therefore (2 * 3) * (4 * 5) = 1 * 1 = 1$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Question 5:

Let *' be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a *' b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Answer 5:

The binary operation *' on the set $\{1, 2, 3, 4, 5\}$ is defined as a *' b = H.C.F of a and b.

The operation table for the operation *' can be given as:

*1	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

We observe that the operation tables for the operations * and *' are the same.

Thus, the operation *' is same as the operation*.

Question 6:

Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of N are invertible for the operation *?

Answer 6:

The binary operation * on N is defined as a * b = L.C.M. of a and b.

(i) 5 * 7 = L.C.M. of 5 and 7 = 35

20 * 16 = L.C.M of 20 and 16 = 80

www.tiwariacademy.com
A Free web support in Education

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

(ii) It is known that

L.C.M of a and b = L.C.M of b and a for all $a, b \in \mathbb{N}$.

$$a * b = b * a$$

Thus, the operation * is commutative.

(iii) For $a, b, c \in \mathbb{N}$, we have

$$(a * b) * c = (L.C.M \text{ of } a \text{ and } b) * c = LCM \text{ of } a, b, \text{ and } c$$

$$a * (b * c) = a * (LCM \text{ of } b \text{ and } c) = L.C.M \text{ of } a, b, \text{ and } c$$

$$(a * b) * c = a * (b * c)$$

Thus, the operation * is associative.

(iv) It is known that:

L.C.M. of a and 1 = a = L.C.M. 1 and a for all $a \in \mathbb{N}$

$$\Rightarrow a * 1 = a = 1 * a \text{ for all } a \in \mathbb{N}$$

Thus, 1 is the identity of * in \mathbb{N} .

(v) An element a in N is invertible with respect to the operation * if there exists an element b in N, such that a * b = e = b * a.

Here,
$$e = 1$$

This means that

L.C.M of a and b = 1 = L.C.M of b and a

This case is possible only when a and b are equal to 1.

Thus, 1 is the only invertible element of N with respect to the operation *.

Question 7:

Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = L.C.M. of a and b a binary operation? Justify your answer.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

Answer 7:

The operation * on the set A = $\{1, 2, 3, 4, 5\}$ is defined as a * b = L.C.M. of a and b.

Then, the operation table for the given operation * can be given as:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

It can be observed from the obtained table that

$$3 * 2 = 2 * 3 = 6 \notin A$$
.

$$5 * 2 = 2 * 5 = 10 \notin A$$
,

$$3 * 4 = 4 * 3 = 12 \notin A$$
,

$$3 * 5 = 5 * 3 = 15 \notin A$$
,

$$4 * 5 = 5 * 4 = 20 \notin A$$

Hence, the given operation * is not a binary operation.

Question 8:

Let * be the binary operation on N defined by a * b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Answer 8:

The binary operation * on N is defined as: a * b = H.C.F. of a and b

It is known that

H.C.F. of a and b = H.C.F. of b and a for all $a, b \in \mathbb{N}$.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

$$a * b = b * a$$

Thus, the operation * is commutative.

For $a, b, c \in \mathbb{N}$, we have

(a * b) * c = (H.C.F. of a and b) * c = H.C.F. of a, b and c

a * (b * c) = a * (H.C.F. of b and c) = H.C.F. of a, b, and c

$$\therefore (a * b) * c = a * (b * c)$$

Thus, the operation * is associative.

Now, an element $e \in \mathbb{N}$ will be the identity for the operation * if a * e = a = e * a for all $a \in \mathbb{N}$.

But this relation is not true for any $a \in \mathbb{N}$.

Thus, the operation * does not have any identity in N.

Question 9:

Let * be a binary operation on the set **Q** of rational numbers as follows:

(i)
$$a * b = a - b$$

(ii)
$$a * b = a^2 + b^2$$

(iii)
$$a * b = a + ab$$

(iv)
$$a * b = (a - b)^2$$

(v)
$$a * b = \frac{ab}{4}$$

(vi)
$$a * b = ab^2$$

Find which of the binary operations are commutative and which are associative.

Answer 9:

(i) On **Q**, the operation * is defined as a * b = a - b. It can be observed that:

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{3-2}{6} = \frac{1}{6}$$

and

$$\frac{1}{3} * \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{2-3}{6} = \frac{-1}{6}$$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

$$\therefore \frac{1}{2} * \frac{1}{3} \neq \frac{1}{3} * \frac{1}{2}, where \frac{1}{2}, \frac{1}{3} \in \mathbf{Q}$$

Thus, the operation * is not commutative.

It can also be observed that

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} - \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{3-2}{6}\right) * \frac{1}{4} = \frac{1}{6} * \frac{1}{4} = \frac{1}{6} - \frac{1}{4} = \frac{2-3}{12} = \frac{-1}{12}$$

and

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{4 - 3}{12}\right) = \frac{1}{2} * \frac{1}{12} = \frac{1}{2} - \frac{1}{12} = \frac{6 - 1}{12} = \frac{5}{12}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right), where \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in \mathbf{Q}$$

Thus, the operation * is not associative.

(ii) On Q, the operation * is defined as $a * b = a^2 + b^2$.

For $a, b \in \mathbf{O}$, we have

$$a * b = a^2 + b^2 = b^2 + a^2 = b * a$$

$$a * b = b * a$$

Thus, the operation * is commutative.

It can be observed that

$$(1 * 2) * 3 = (1^2 + 2^2) * 3 = (1 + 4) * 3 = 5 * 3 = 5^2 + 3^2 = 34$$
 and

$$1*(2*3) = 1*(2^2 + 3^2) = 1*(4+9) = 1*13 = 1^2 + 13^2 = 170$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Q}

Thus, the operation * is not associative.

(iii)On Q, the operation * is defined as a * b = a + ab.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

It can be observed that

$$1 * 2 = 1 + 1 \times 2 = 1 + 2 = 3$$

$$2 * 1 = 2 + 2 \times 1 = 2 + 2 = 4$$

∴ 1 * 2
$$\neq$$
 2 * 1, where 1, 2 ∈ **Q**

Thus, the operation * is not commutative.

It can also be observed that

$$(1*2)*3 = (1+1\times2)*3 = (1+2)*3 = 3*3 = 3+3\times3 = 3+9=12$$
 and

$$1*(2*3) = 1*(2+2\times3) = 1*(2+6) = 1*8 = 1+1\times8 = 1+8=9$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Q}

Thus, the operation * is not associative.

(iv) On **Q**, the operation * is defined by $a * b = (a - b)^2$.

For $a, b \in \mathbf{Q}$, we have

$$a * b = (a - b)^2$$

$$b * a = (b - a)^2 = [-(a - b)]^2 = (a - b)^2$$

$$a * b = b * a$$

Thus, the operation * is commutative.

It can be observed that

$$(1*2)*3 = (1-2)^2*3 = (-1)^2*3 = 1*3 = (1-3)^2 = (-2)^2 = 4$$

and

$$1*(2*3) = 1*(2-3)^2 = 1*(-1)^2 = 1*1 = (1-1)^2 = 0$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbb{Q}

Thus, the operation * is not associative.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

(v) On **Q**, the operation * is defined as $a*b = \frac{ab}{4}$.

For $a, b \in \mathbf{Q}$, we have

$$a*b = \frac{ab}{4} = \frac{ba}{4} = b*a$$

$$a * b = b * a$$

Thus, the operation * is commutative.

For $a, b, c \in \mathbf{Q}$, we have

$$(a*b)*c = \left(\frac{ab}{4}\right)*c = \frac{\left(\frac{ab}{4}\right) \cdot c}{4} = \frac{abc}{16}$$

and

$$a*(b*c) = a*\left(\frac{bc}{4}\right) = \frac{a.\left(\frac{bc}{4}\right)}{4} = \frac{abc}{16}$$

$$\therefore$$
 $(a * b) * c = a * (b * c)$, where $a, b, c \in \mathbf{Q}$

Thus, the operation * is associative.

(vi) On **Q**, the operation * is defined as $a * b = ab^2$

It can be observed that

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{18}$$

and

$$\frac{1}{3} * \frac{1}{2} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$\therefore \frac{1}{2} * \frac{1}{3} \neq \frac{1}{3} * \frac{1}{2}$$
, where $\frac{1}{2}$ and $\frac{1}{3} \in \mathbf{Q}$

Thus, the operation * is not commutative.

It can also be observed that

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left[\frac{1}{2}\left(\frac{1}{3}\right)^{2}\right] * \frac{1}{4} = \frac{1}{18} * \frac{1}{4} = \frac{1}{18} \cdot \left(\frac{1}{4}\right)^{2} = \frac{1}{18 \times 16} = \frac{1}{288}$$

and

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left[\frac{1}{3}\left(\frac{1}{4}\right)^{2}\right] = \frac{1}{2} * \frac{1}{48} = \frac{1}{2}\left(\frac{1}{48}\right)^{2} = \frac{1}{2 \times 2304} = \frac{1}{4608}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right), where \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in \mathbf{Q}$$

Thus, the operation * is not associative.

Hence, the operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

Question 10:

Find which of the operations given above has identity.

Answer 10:

An element $e \in \mathbf{Q}$ will be the identity element for the operation *

if
$$a * e = a = e * a$$
, for all $a \in \mathbf{Q}$.

However, there is no such element $e \in \mathbf{Q}$ with respect to each of the six operations satisfying the above condition.

Thus, none of the six operations has identity.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

Question 11:

Let $A = N \times N$ and * be the binary operation on A defined by

$$(a, b) * (c, d) = (a + c, b + d)$$

Show that * is commutative and associative. Find the identity element for * on A, if any.

Answer 11:

 $A = N \times N$ and * is a binary operation on A and is defined by

$$(a, b) * (c, d) = (a + c, b + d)$$

Let $(a, b), (c, d) \in A$

Then, $a, b, c, d \in \mathbb{N}$

We have:

$$(a, b) * (c, d) = (a + c, b + d)$$

$$(c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)$$

[Addition is commutative in the set of natural numbers]

$$\therefore$$
 (a, b) * (c, d) = (c, d) * (a, b)

Therefore, the operation * is commutative.

Now, let $(a, b), (c, d), (e, f) \in A$

Then, a, b, c, d, e, $f \in \mathbb{N}$

We have

$$[(a,b)*(c,d)]*(e,f) = (a+c,b+d)*(e,f) = (a+c+e,b+d+f)$$

and

$$(a,b) * [(c,d) * (e,f)] = (a,b) * (c+e,d+f) = (a+c+e,b+d+f)$$

$$\therefore [(a,b)*(c,d)]*(e,f) = (a,b)*[(c,d)*(e,f)]$$

Therefore, the operation * is associative.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Let an element $e = (e_1, e_2) \in A$ will be an identity element for the operation * if a * e = a = e * a for all $a = (a_1, a_2) \in A$

i.e.,
$$(a_1 + e_1, a_2 + e_2) = (a_1, a_2) = (e_1 + a_1, e_2 + a_2)$$

Which is not true for any element in A.

Therefore, the operation * does not have any identity element.

Question 12:

State whether the following statements are true or false. Justify.

- (i) For an arbitrary binary operation * on a set \mathbb{N} , $a * a = a \forall a \in \mathbb{N}$.
- (ii) If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a

Answer 12:

(i) Define an operation * on N as $a * b = a + b \forall a, b \in \mathbb{N}$

Then, in particular, for b = a = 3, we have

$$3 * 3 = 3 + 3 = 6 \neq 3$$

Therefore, statement (i) is false.

(ii) R.H.S. =
$$(c * b) * a$$

$$= (b * c) * a$$

[* is commutative]

$$= a * (b * c)$$

[Again, as * is commutative]

$$=$$
 L.H.S.

$$\therefore a * (b * c) = (c * b) * a$$

Therefore, statement (ii) is true.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Question 13:

Consider a binary operation * on N defined as $a * b = a^3 + b^3$. Choose the correct answer.

- (A)Is * both associative and commutative?
- (B) Is * commutative but not associative?
- (C) Is * associative but not commutative?
- (D) Is * neither commutative nor associative?

Answer 13:

On N, the operation * is defined as $a * b = a^3 + b^3$.

For, $a, b \in \mathbb{N}$, we have

$$a * b = a^3 + b^3 = b^3 + a^3 = b * a$$

[Addition is commutative in N]

Therefore, the operation * is commutative.

It can be observed that

$$(1*2)*3 = (1^3 + 2^3)*3 = (1+8)*3 = 9*3 = 9^3 + 3^3 = 729 + 27 = 756$$
 and $1*(2*3) = 1*(2^3 + 3^3) = 1*(8+27) = 1*35 = 1^3 + 35^3 = 1 + 42875 = 42876$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3), where 1, 2, 3 \in \mathbf{N}

Therefore, the operation * is not associative.

Hence, the operation * is commutative, but not associative.

Thus, the correct answer is B.