(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII Exercise 12.1

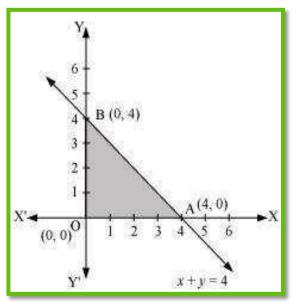
Question 1:

Maximise Z = 3x + 4y

Subject to the constraints: $x + y \le 4, x \ge 0, y \ge 0$.

Answer 1:

The feasible region determined by the constraints, $x + y \le 4$, $x \ge 0$, $y \ge 0$, is as follows.



The corner points of the feasible region are O (0, 0), A (4, 0), and B (0, 4). The values of Z at these points are as follows.

Corner point	Z = 3x + 4y	
O(0, 0)	0	
A(4, 0)	12	
B(0, 4)	16	\rightarrow Maximum

Therefore, the maximum value of Z is 16 at the point B (0, 4).

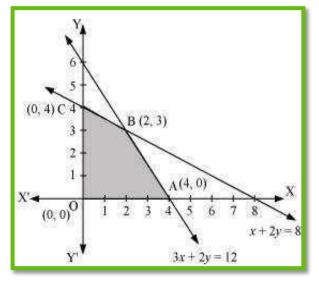
(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

Question 2:

Minimise Z = -3x + 4ysubject to $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$.

Answer 2:

The feasible region determined by the system of constraints, $x+2y \le 8$, $3x+2y \le 12$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are O (0, 0), A (4, 0), B (2, 3), and C (0, 4).

Corner point	Z = -3x + 4y	
0(0, 0)	0	
A(4, 0)	-12	→ Minimum
B(2, 3)	6	
C(0, 4)	16	

The values of Z at these corner points are as follows.

Therefore, the minimum value of Z is -12 at the point (4, 0).

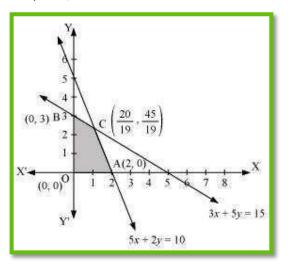
(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

Question 3:

Maximise Z = 5x + 3y subject to $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

Answer 3:

The feasible region determined by the system of constraints, $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, and $y \ge 0$, are as follows.



The corner points of the feasible region are O (0, 0), A (2, 0), B (0, 3), and $C\left(\frac{20}{19}, \frac{45}{19}\right)$.

Corner point	Z = 5x + 3y	
0(0, 0)	0	
A(2, 0)	10	
B(0, 3)	9	
$C\left(\frac{20}{19},\frac{45}{19}\right)$	$\frac{235}{19}$	\rightarrow Maximum
Therefore, the maximum value of Z is $\frac{235}{19}$ at the point $\left(\frac{20}{19}, \frac{45}{19}\right)$.		

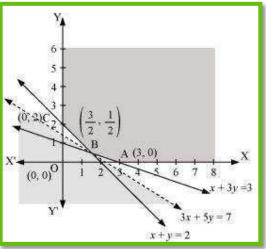
(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

Question 4:

Minimise Z = 3x + 5ysuch that $x+3y \ge 3$, $x+y \ge 2$, $x, y \ge 0$.

Answer 4:

The feasible region determined by the system of constraints, $x+3y \ge 3, x+y \ge 2$, and x, $y \ge 0$, is as follows.



It can be seen that the feasible region is unbounded.

The corner points of the feasible region are A (3, 0), $B\left(\frac{3}{2}, \frac{1}{2}\right)$, and C (0, 2).

The values of Z at these corner points are as follows.

Corner point	Z = 3x + 5y	
A(3, 0)	9	
$B\left(\frac{3}{2},\frac{1}{2}\right)$	7	\rightarrow Smallest
C(0, 2)	10	

As the feasible region is unbounded, therefore, 7 may or may not be the minimum value of Z.

(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming)

XII

For this, we draw the graph of the inequality, 3x + 5y < 7, and check whether the resulting half plane has points in common with the feasible region or not.

It can be seen that the feasible region has no common point with 3x + 5y < 7 Therefore,

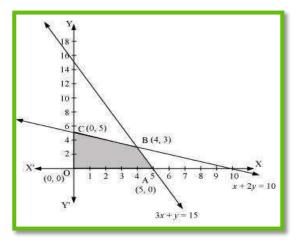
the minimum value of Z is 7 at $\left(\frac{3}{2}, \frac{1}{2}\right)$

Question 5:

Maximise Z = 3x + 2ysubject to $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$

Answer 5:

The feasible region determined by the constraints, $x + 2y \le 10$, $3x + y \le 15$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A (5, 0), B (4, 3), and C (0, 5).

The values of Z at these corner points are as follows.

Corner point	Z = 3x + 2y	
A(5, 0)	15	
B(4, 3)	18	\rightarrow Maximum
C(0, 5)	10	

Therefore, the maximum value of Z is 18 at the point (4, 3).

(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

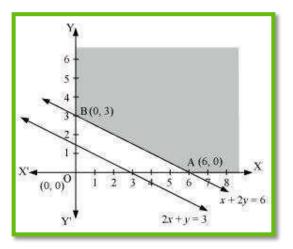
Question 6:

Minimise Z = x + 2ysubject to $2x + y \ge 3$, $x + 2y \ge 6$, $x, y \ge 0$

Answer 6:

The feasible region determined by the constraints, $2x + y \ge 3$, $x + 2y \ge 6$, $x \ge 0$, and y

 \geq 0, is as follows.



The corner points of the feasible region are A (6, 0) and B (0, 3).

The values of Z at these corner points are as follows.

Corner point	Z = x + 2y
A(6, 0)	6
B(0, 3)	6

It can be seen that the value of Z at points A and B is same. If we take any other point such as (2, 2) on line x + 2y = 6, then Z = 6

Thus, the minimum value of Z occurs for more than 2 points.

Therefore, the value of Z is minimum at every point on the line, x + 2y = 6

Question 7:

Minimise and Maximise Z = 5x + 10y

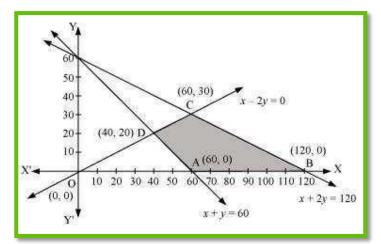
subject to $x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x, y \ge 0$.

Answer 7:

www.tiwariacademy.com Free web support in Education

Mathematics (<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

The feasible region determined by the constraints, $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A (60, 0), B (120, 0), C (60, 30), and D (40, 20).

The values of Z at these corner points are as follows.

Corner point	Z = 5x + 10y	
A(60, 0)	300	→ Minimum
B(120, 0)	600	\rightarrow Maximum
C(60, 30)	600	\rightarrow Maximum
D(40, 20)	400	

The minimum value of Z is 300 at (60, 0) and the maximum value of Z is 600 at all the points on the line segment joining (120, 0) and (60, 30).

Question 8:

Minimise and Maximise Z = x + 2ysubject to $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$; $x, y \ge 0$.

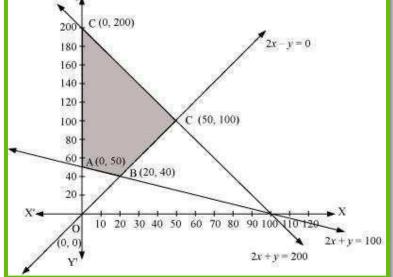
Answer 8:

The feasible region determined by the constraints, $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x \ge 0$, and $y \ge 0$, is as follows.

7

www.tiwariacademy.com Free web support in Education

Mathematics (<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII



The corner points of the feasible region are A(0, 50), B(20, 40), C(50, 100), and D(0, 200).

Corner point	$\mathbf{Z} = \mathbf{x} + 2\mathbf{y}$	
A(0, 50)	100	→ Minimum
B(20, 40)	100	→ Minimum
C(50, 100)	250	
D(0, 200)	400	→ Maximum

The values of Z at these corner points are as follows.

The maximum value of Z is 400 at (0, 200) and the minimum value of Z is 100 at all the points on the line segment joining the points (0, 50) and (20, 40).

8 www.tiwariacademy.com Free web support in Education

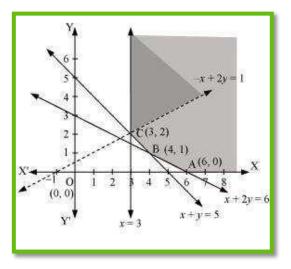
(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

Question 9:

Maximise Z = -x + 2y, subject to the constraints: $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, $y \ge 0$

Answer 9:

The feasible region determined by the constraints, $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, and $y \ge 0$, is as follows.



It can be seen that the feasible region is unbounded.

The values of Z at corner points A (6, 0), B (4, 1), and C (3, 2) are as follows.

Corner point	Z = -x + 2y
A(6, 0)	Z = - 6
B(4, 1)	Z = - 2
C(3, 2)	Z = 1

As the feasible region is unbounded, therefore, Z = 1 may or may not be the maximum value.

For this, we graph the inequality, -x + 2y > 1, and check whether the resulting half plane has points in common with the feasible region or not.

The resulting feasible region has points in common with the feasible region.

Therefore, Z = 1 is not the maximum value. Z has no maximum value.

(<u>www.tiwariacademy.com</u>) (Chapter 12)(Linear Programming) XII

Question 10:

Maximise Z = x + y, subject to $x - y \le -1$, $-x + y \le 0$, $x, y \ge 0$.

Answer 10:

The region determined by the constraints, is as follows. There is no feasible region and thus, Z ha: $x - y \le -1$, $-x + y \le 0$, $x, y \ge 0$,

