Mathematics

www.tiwariacademy.in

Application of Derivatives Exercise 6.2

Question 1:

Show that the function given by f(x) = 3x + 17 is strictly increasing on **R**.

Answer

Let x_1 and x_2 be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Rightarrow 3x_1 < 3x_2 \Rightarrow 3x_1 + 17 < 3x_2 + 17 \Rightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on R.

Alternate method:

f'(x) = 3 > 0, in every interval of **R**.

Thus, the function is strictly increasing on \mathbf{R} .

Question 2:

Show that the function given by $f(x) = e^{2x}$ is strictly increasing on **R**.

Answer

Let x_1 and x_2 be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Rightarrow 2x_1 < 2x_2 \Rightarrow e^{2x_1} < e^{2x_2} \Rightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on \mathbf{R} .

Question 3:

Show that the function given by $f(x) = \sin x$ is

- (a) strictly increasing in $\left(0,\frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2},\pi\right)$
- (c) neither increasing nor decreasing in $(0, \pi)$

Answer

The given function is $f(x) = \sin x$.

$$f'(x) = \cos x$$

(a) Since for each $x \in \left(0, \frac{\pi}{2}\right), \cos x > 0$, we have f'(x) > 0.

Hence, f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

(b) Since for each $x \in \left(\frac{\pi}{2}, \pi\right), \cos x < 0$, we have f'(x) < 0.

Hence, f is strictly decreasing in $\left(\frac{\pi}{2},\pi\right)$.

(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in $(0, \pi)$.

Question 4:

Find the intervals in which the function f given by $f(x) = 2x^2 - 3x$ is

(a) strictly increasing (b) strictly decreasing

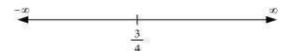
Answer

The given function is $f(x) = 2x^2 - 3x$.

$$f'(x) = 4x - 3$$

$$\therefore f'(x) = 0 \implies x = \frac{3}{4}$$

Now, the point $\frac{3}{4}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, \frac{3}{4}\right)$ and $\left(\frac{3}{4}, \infty\right)$.



In interval $\left(-\infty, \frac{3}{4}\right)$, f'(x) = 4x - 3 < 0.

Hence, the given function (f) is strictly decreasing in interval $\left(-\infty, \frac{3}{4}\right)$.

In interval
$$\left(\frac{3}{4},\infty\right)$$
, $f'(x) = 4x - 3 > 0$.

Hence, the given function (f) is strictly increasing in interval $\left(\frac{3}{4},\infty\right)$.

Question 5:

Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is (a) strictly increasing (b) strictly decreasing

Answer

The given function is $f(x) = 2x^3 - 3x^2 - 36x + 7$.

$$f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6) = 6(x + 2)(x - 3)$$

$$f'(x) = 0 \Rightarrow x = -2, 3$$

The points x = -2 and x = 3 divide the real line into three disjoint intervals i.e., $(-\infty, -2), (-2, 3)$, and $(3, \infty)$.

In intervals $(-\infty, -2)$ and $(3, \infty)$, f'(x) is positive while in interval

(-2, 3), f'(x) is negative.

Hence, the given function (f) is strictly increasing in intervals

 $(-\infty, -2)$ and $(3, \infty)$, while function (*f*) is strictly decreasing in interval (-2, 3).

Question 6:

Find the intervals in which the following functions are strictly increasing or decreasing:

(a)
$$x^2 + 2x - 5$$
 (b) $10 - 6x - 2x^2$

(c)
$$-2x^3 - 9x^2 - 12x + 1$$
 (d) $6 - 9x - x^2$

(e)
$$(x + 1)^3 (x - 3)^3$$

Answer

(a) We have,

$$f(x) = x^2 + 2x - 5$$

$$\therefore f'(x) = 2x + 2$$

Now,

$$f'(x) = 0 \Rightarrow x = -1$$

Point x = -1 divides the real line into two disjoint intervals i.e., $(-\infty, -1)$ and $(-1, \infty)$.

In interval $(-\infty, -1)$, f'(x) = 2x + 2 < 0.

∴ f is strictly decreasing in interval $(-\infty, -1)$.

Thus, f is strictly decreasing for x < -1.

In interval $(-1, \infty)$, f'(x) = 2x + 2 > 0.

 \therefore f is strictly increasing in interval $(-1, \infty)$.

Thus, f is strictly increasing for x > -1.

(b) We have,

$$f(x) = 10 - 6x - 2x^2$$

$$\therefore f'(x) = -6 - 4x$$

Now,

$$f'(x) = 0 \Rightarrow x = -\frac{3}{2}$$

The point $x = -\frac{3}{2}$ divides the real line into two disjoint intervals

i.e.,
$$\left(-\infty, -\frac{3}{2}\right)$$
 and $\left(-\frac{3}{2}, \infty\right)$.

In interval $\left(-\infty, -\frac{3}{2}\right)$ i.e., when $x < -\frac{3}{2}$, f'(x) = -6 - 4x < 0.

 \therefore *f* is strictly increasing for $x < -\frac{3}{2}$.

In interval $\left(-\frac{3}{2},\infty\right)$ i.e., when $x > -\frac{3}{2}$ f'(x) = -6 - 4x < 0.

 \therefore f is strictly decreasing for $x > -\frac{3}{2}$.

(c) We have,

$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

$$f'(x) = -6x^2 - 18x - 12 = -6(x^2 + 3x + 2) = -6(x+1)(x+2)$$

Now,

$$f'(x) = 0 \implies x = -1 \text{ and } x = -2$$

Points x = -1 and x = -2 divide the real line into three disjoint intervals

i.e.,
$$(-\infty, -2)$$
, $(-2, -1)$, and $(-1, \infty)$.

In intervals $\left(-\infty,-2\right)$ and $\left(-1,\infty\right)$ i.e., when x<-2 and x>-1,

$$f'(x) = -6(x+1)(x+2) < 0$$

 \therefore f is strictly decreasing for x < -2 and x > -1.

Now, in interval (-2, -1) i.e., when -2 < x < -1, f'(x) = -6(x+1)(x+2) > 0.

 $\therefore f$ is strictly increasing for -2 < x < -1.

(d) We have,

$$f(x) = 6 - 9x - x^2$$

$$\therefore f'(x) = -9 - 2x$$

Now, f'

$$(x) = 0 \text{ gives } x = -\frac{9}{2}$$

The point $x = -\frac{9}{2}$ divides the real line into two disjoint intervals i.e.,

$$\left(-\infty, -\frac{9}{2}\right)$$
 and $\left(-\frac{9}{2}, \infty\right)$.

In interval $\left(-\infty, -\frac{9}{2}\right)$ i.e., for $x < -\frac{9}{2}$, f'(x) = -9 - 2x > 0.

 $\therefore f$ is strictly increasing for $x < -\frac{9}{2}$.

In interval $\left(-\frac{9}{2},\infty\right)$ i.e., for $x > -\frac{9}{2}$, f'(x) = -9 - 2x < 0.

 \therefore f is strictly decreasing for $x > -\frac{9}{2}$.

(e) We have,

$$f(x) = (x+1)^3 (x-3)^3$$

$$f'(x) = 3(x+1)^2 (x-3)^3 + 3(x-3)^2 (x+1)^3$$

$$= 3(x+1)^2 (x-3)^2 [x-3+x+1]$$

$$= 3(x+1)^2 (x-3)^2 (2x-2)$$

$$= 6(x+1)^2 (x-3)^2 (x-1)$$

Now,

$$f'(x) = 0 \implies x = -1, 3, 1$$

The points x = -1, x = 1, and x = 3 divide the real line into four disjoint intervals

i.e.,
$$(-\infty, -1)$$
, $(-1, 1)$, $(1, 3)$, and $(3, \infty)$.

In intervals $(-\infty, -1)$ and (-1, 1), $f'(x) = 6(x+1)^2(x-3)^2(x-1) < 0$.

∴ f is strictly decreasing in intervals $(-\infty, -1)$ and (-1, 1).

In intervals (1, 3) and $(3,\infty)$, $f'(x) = 6(x+1)^2(x-3)^2(x-1) > 0$.

f is strictly increasing in intervals (1, 3) and (3, ∞).

Question 7:

Show that $y = \log(1+x) - \frac{2x}{2+x}$, x > -1, is an increasing function of x throughout its domain.

Answer

We have,

$$y = \log(1+x) - \frac{2x}{2+x}$$

$$\therefore \frac{dy}{dx} = \frac{1}{1+x} - \frac{(2+x)(2)-2x(1)}{(2+x)^2} = \frac{1}{1+x} - \frac{4}{(2+x)^2} = \frac{x^2}{(2+x)^2}$$

Now,
$$\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{x^2}{(2+x)^2} = 0$$

$$\Rightarrow x^2 = 0 \qquad \left[(2+x) \neq 0 \text{ as } x > -1 \right]$$

$$\Rightarrow x = 0$$

Since x > -1, point x = 0 divides the domain $(-1, \infty)$ in two disjoint intervals i.e., -1 < x < 0 and x > 0.

When -1 < x < 0, we have:

$$x < 0 \Rightarrow x^2 > 0$$

$$x > -1 \Rightarrow (2+x) > 0 \Rightarrow (2+x)^2 > 0$$

$$\therefore y' = \frac{x^2}{(2+x)^2} > 0$$

Also, when x > 0:

$$x > 0 \Rightarrow x^2 > 0, (2+x)^2 > 0$$

$$\therefore y' = \frac{x^2}{(2+x)^2} > 0$$

Hence, function f is increasing throughout this domain.

Question 8:

Find the values of x for which $y = [x(x-2)]^2$ is an increasing function.

Answer

We have,

$$y = [x(x-2)]^2 = [x^2 - 2x]^2$$

$$\therefore \frac{dy}{dx} = y' = 2(x^2 - 2x)(2x - 2) = 4x(x - 2)(x - 1)$$

$$\therefore \frac{dy}{dx} = 0 \implies x = 0, x = 2, x = 1.$$

The points x = 0, x = 1, and x = 2 divide the real line into four disjoint intervals i.e., $(-\infty, 0)$, (0,1) (1,2), and $(2,\infty)$.

In intervals $(-\infty,0)$ and (1,2), $\frac{dy}{dx} < 0$.

 \therefore y is strictly decreasing in intervals $(-\infty,0)$ and (1,2).

However, in intervals (0, 1) and (2, ∞), $\frac{dy}{dx} > 0$.

 \therefore y is strictly increasing in intervals (0, 1) and (2, ∞).

 \therefore y is strictly increasing for 0 < x < 1 and x > 2.

Question 9:

Prove that
$$y = \frac{4\sin\theta}{\left(2+\cos\theta\right)} - \theta$$
 is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

We have,

$$y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$$

$$\therefore \frac{dy}{dx} = \frac{(2+\cos\theta)(4\cos\theta) - 4\sin\theta(-\sin\theta)}{(2+\cos\theta)^2} - 1$$

$$= \frac{8\cos\theta + 4\cos^2\theta + 4\sin^2\theta}{(2+\cos\theta)^2} - 1$$

$$= \frac{8\cos\theta + 4}{(2+\cos\theta)^2} - 1$$

Now,
$$\frac{dy}{dx} = 0$$
.
 $8\cos\theta + 4$

$$\Rightarrow \frac{8\cos\theta + 4}{\left(2 + \cos\theta\right)^2} = 1$$

$$\Rightarrow 8\cos\theta + 4 = 4 + \cos^2\theta + 4\cos\theta$$
$$\Rightarrow \cos^2\theta - 4\cos\theta = 0$$

$$\Rightarrow \cos\theta(\cos\theta - 4) = 0$$

$$\Rightarrow \cos \theta = 0 \text{ or } \cos \theta = 4$$

Since
$$\cos \theta \neq 4$$
, $\cos \theta = 0$.

$$\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$$

Now,

$$\frac{dy}{dx} = \frac{8\cos\theta + 4 - \left(4 + \cos^2\theta + 4\cos\theta\right)}{\left(2 + \cos\theta\right)^2} = \frac{4\cos\theta - \cos^2\theta}{\left(2 + \cos\theta\right)^2} = \frac{\cos\theta\left(4 - \cos\theta\right)}{\left(2 + \cos\theta\right)^2}$$

In interval $\left(0, \frac{\pi}{2}\right)$, we have $\cos \theta > 0$. Also, $4 > \cos \theta \Rightarrow 4 - \cos \theta > 0$.

 $\therefore \cos\theta (4-\cos\theta) > 0 \text{ and also } (2+\cos\theta)^2 > 0$

$$\Rightarrow \frac{\cos\theta \left(4 - \cos\theta\right)}{\left(2 + \cos\theta\right)^2} > 0$$

$$\Rightarrow \frac{dy}{dx} > 0$$

Therefore, y is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.

Also, the given function is continuous at x = 0 and $x = \frac{\pi}{2}$.

Hence, y is increasing in interval $\left[0, \frac{\pi}{2}\right]$.

Question 10:

Prove that the logarithmic function is strictly increasing on $(0, \infty)$.

Answer

The given function is $f(x) = \log x$.

$$\therefore f'(x) = \frac{1}{x}$$

It is clear that for x > 0, $f'(x) = \frac{1}{x} > 0$.

Hence, $f(x) = \log x$ is strictly increasing in interval $(0, \infty)$.

Question 11:

Prove that the function f given by $f(x) = x^2 - x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).

Answer

The given function is $f(x) = x^2 - x + 1$.

$$\therefore f'(x) = 2x - 1$$

Now,
$$f'(x) = 0 \Rightarrow x = \frac{1}{2}$$
.

The point $\frac{1}{2}$ divides the interval (-1, 1) into two disjoint intervals

i.e.,
$$\left(-1, \frac{1}{2}\right)$$
 and $\left(\frac{1}{2}, 1\right)$.

Now, in interval
$$\left(-1, \frac{1}{2}\right)$$
, $f'(x) = 2x - 1 < 0$.

Therefore, f is strictly decreasing in interval $\left(-1, \frac{1}{2}\right)$.

However, in interval $\left(\frac{1}{2}, 1\right)$, f'(x) = 2x - 1 > 0.

Therefore, f is strictly increasing in interval $\left(\frac{1}{2}, 1\right)$. Hence, f is neither strictly increasing nor decreasing in interval (-1, 1).

Question 12:

Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$? (A) $\cos x$ (B) $\cos 2x$ (C) $\cos 3x$ (D) $\tan x$

Answer

(A) Let
$$f_1(x) = \cos x$$
.

$$\therefore f_1'(x) = -\sin x$$

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $f_1'(x) = -\sin x < 0$.

$$\therefore f_1(x) = \cos x \text{ is strictly decreasing in interval} \left(0, \frac{\pi}{2}\right).$$

(B) Let
$$f_2(x) = \cos 2x$$
.

$$\therefore f_2'(x) = -2\sin 2x$$

Now,
$$0 < x < \frac{\pi}{2} \Rightarrow 0 < 2x < \pi \Rightarrow \sin 2x > 0 \Rightarrow -2\sin 2x < 0$$

$$\therefore f_2'(x) = -2\sin 2x < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\therefore f_2(x) = \cos 2x \text{ is strictly decreasing in interval} \left(0, \frac{\pi}{2}\right).$$

(C) Let
$$f_3(x) = \cos 3x$$
.

$$\therefore f_3'(x) = -3\sin 3x$$

Now,
$$f_3'(x) = 0$$
.

$$\Rightarrow \sin 3x = 0 \Rightarrow 3x = \pi, as \ x \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow x = \frac{\pi}{3}$$

The point $x = \frac{\pi}{3}$ divides the interval $\left(0, \frac{\pi}{2}\right)$ into two disjoint intervals

i.e., 0
$$\left(0, \frac{\pi}{3}\right)$$
 and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

Now, in interval
$$\left(0, \frac{\pi}{3}\right)$$
, $f_3(x) = -3\sin 3x < 0$ $\left[as \ 0 < x < \frac{\pi}{3} \Rightarrow 0 < 3x < \pi\right]$.

$$\therefore f_3$$
 is strictly decreasing in interval $\left(0, \frac{\pi}{3}\right)$.

However, in interval
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$
, $f_3(x) = -3\sin 3x > 0$ $\left[as \frac{\pi}{3} < x < \frac{\pi}{2} \Rightarrow \pi < 3x < \frac{3\pi}{2}\right]$.

 $\therefore f_3$ is strictly increasing in interval $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

Hence, f_3 is neither increasing nor decreasing in interval $\left(0, \frac{\pi}{2}\right)$

- (D) Let $f_4(x) = \tan x$.
- $\therefore f_4'(x) = \sec^2 x$

In interval $\left(0, \frac{\pi}{2}\right), f_4'(x) = \sec^2 x > 0.$

 \therefore f_4 is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.

Therefore, functions $\cos x$ and $\cos 2x$ are strictly decreasing in $\left(0, \frac{\pi}{2}\right)$.

Hence, the correct answers are A and B.

Question 13:

On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ strictly decreasing?

(A)
$$(0, 1)$$

(B)
$$\left(\frac{\pi}{2}, \pi\right)$$

(C)
$$\left(0, \frac{\pi}{2}\right)$$

(D) None of these

Answer

We have,

$$f(x) = x^{100} + \sin x - 1$$

$$f'(x) = 100x^{99} + \cos x$$

In interval (0, 1), $\cos x > 0$ and $100x^{99} > 0$.

$$\therefore f'(x) > 0.$$

Thus, function f is strictly increasing in interval (0, 1).

In interval $\left(\frac{\pi}{2},\pi\right)$, $\cos x < 0$ and $100 x^{99} > 0$. Also, $100 x^{99} > \cos x$

$$\therefore f'(x) > 0 \text{ in } \left(\frac{\pi}{2}, \pi\right).$$

Thus, function f is strictly increasing in interval $\left(\frac{\pi}{2}, \pi\right)$

In interval $\left(0, \frac{\pi}{2}\right)$, $\cos x > 0$ and $100x^{99} > 0$.

$$100x^{99} + \cos x > 0$$

$$\Rightarrow f'(x) > 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

 \therefore f is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.

Hence, function f is strictly decreasing in none of the intervals.

The correct answer is D.

Question 14:

Find the least value of a such that the function f given $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2).

Answer

We have,

$$f(x) = x^2 + ax + 1$$

$$\therefore f'(x) = 2x + a$$

Now, function f will be increasing in (1, 2), if f'(x) > 0 in (1, 2).

$$\Rightarrow 2x + a > 0$$

$$\Rightarrow 2x > -a$$

$$\Rightarrow x > \frac{-a}{2}$$

Therefore, we have to find the least value of a such that

$$x > \frac{-a}{2}$$
, when $x \in (1, 2)$.

$$\Rightarrow x > \frac{-a}{2}$$
 (when $1 < x < 2$)

Thus, the least value of a for f to be increasing on (1, 2) is given by,

$$\frac{-a}{2} = 1$$

$$\frac{-a}{2} = 1 \Rightarrow a = -2$$

Hence, the required value of a is -2.

Question 15:

Let \mathbf{I} be any interval disjoint from (-1, 1). Prove that the function f given by

 $f(x) = x + \frac{1}{x}$ is strictly increasing on **I**.

Answer

We have,

$$f(x) = x + \frac{1}{x}$$

$$\therefore f'(x) = 1 - \frac{1}{x^2}$$

Now,

$$f'(x) = 0 \Rightarrow \frac{1}{x^2} = 1 \Rightarrow x = \pm 1$$

The points x = 1 and x = -1 divide the real line in three disjoint intervals i.e.,

$$(-\infty,-1),(-1, 1)$$
, and $(1, \infty)$

In interval (-1, 1), it is observed that:

$$-1 < x < 1$$

$$\Rightarrow x^2 < 1$$

$$\Rightarrow 1 < \frac{1}{r^2}, x \neq 0$$

$$\Rightarrow 1 - \frac{1}{x^2} < 0, x \neq 0$$

$$\therefore f'(x) = 1 - \frac{1}{x^2} < 0 \text{ on } (-1, 1) \sim \{0\}.$$

$$\therefore f$$
 is strictly decreasing on $(-1, 1) \sim \{0\}$.

In intervals $(-\infty, -1)$ and $(1, \infty)$, it is observed that:

$$x < -1 \text{ or } 1 < x$$

$$\Rightarrow x^2 > 1$$

$$\Rightarrow 1 > \frac{1}{x^2}$$

$$\Rightarrow 1 - \frac{1}{r^2} > 0$$

:.
$$f'(x) = 1 - \frac{1}{x^2} > 0$$
 on $(-\infty, -1)$ and $(1, \infty)$.

∴ f is strictly increasing on $(-\infty, 1)$ and $(1, \infty)$.

Hence, function f is strictly increasing in interval \mathbf{I} disjoint from (-1, 1). Hence, the given result is proved.

Question 16:

Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and

strictly decreasing on $\left(\frac{\pi}{2},\pi\right)$.

Answer

We have,

$$f(x) = \log \sin x$$

$$\therefore f'(x) = \frac{1}{\sin x} \cos x = \cot x$$

In interval $\left(0, \frac{\pi}{2}\right), f'(x) = \cot x > 0.$

$$\therefore f$$
 is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

In interval $\left(\frac{\pi}{2}, \pi\right)$, $f'(x) = \cot x < 0$.

 $\therefore f$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.

Question 17:

Prove that the function f given by $f(x) = \log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and

strictly increasing on $\left(\frac{\pi}{2},\pi\right)$.

Allowei

We have,

$$f(x) = \log \cos x$$

$$\therefore f'(x) = \frac{1}{\cos x} (-\sin x) = -\tan x$$

In interval $\left(0, \frac{\pi}{2}\right)$, $\tan x > 0 \Rightarrow -\tan x < 0$.

$$\therefore f'(x) < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\therefore f$$
 is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

In interval $\left(\frac{\pi}{2}, \pi\right)$, $\tan x < 0 \Rightarrow -\tan x > 0$.

$$\therefore f'(x) > 0 \text{ on } \left(\frac{\pi}{2}, \pi\right)$$

 $\therefore f$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.

Question 18:

Prove that the function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing in **R**.

Answer

We have,

$$f(x) = x^3 - 3x^2 + 3x - 100$$
$$f'(x) = 3x^2 - 6x + 3$$
$$= 3(x^2 - 2x + 1)$$
$$= 3(x - 1)^2$$

For any $x \in \mathbb{R}$, $(x - 1)^2 > 0$.

Thus, f'(x) is always positive in **R**.

Hence, the given function (f) is increasing in \mathbf{R} .

Question 19:

The interval in which $y = x^2 e^{-x}$ is increasing is

(A)
$$\left(-\infty,\infty\right)$$
 (B) $\left(-2,0\right)$

$$(B)(-2,0)$$

$$(C)(2,\infty)$$

Answer

We have,

$$y = x^2 e^{-x}$$

$$\therefore \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$

Now,
$$\frac{dy}{dx} = 0$$
.

$$\Rightarrow x = 0 \text{ and } x = 2$$

The points x = 0 and x = 2 divide the real line into three disjoint intervals

i.e.,
$$(-\infty, 0)$$
, $(0, 2)$, and $(2, \infty)$.

In intervals $(-\infty, 0)$ and $(2, \infty)$, f'(x) < 0 as e^{-x} is always positive.

f is decreasing on $(-\infty, 0)$ and $(2, \infty)$.

In interval (0, 2), f'(x) > 0.

 \therefore f is strictly increasing on (0, 2).

Hence, f is strictly increasing in interval (0, 2).

The correct answer is D.