Exercise 6.4

Question 1:

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal

(i) $\sqrt{25.3}$	(ii) √49.5	(iii) √0.6
(iv) $(0.009)^{\frac{1}{3}}$	(v) $(0.999)^{\frac{1}{10}}$	(vi) $(15)^{\frac{1}{4}}$
$(vii) (26)^{\frac{1}{3}}$	(viii) $(255)^{\frac{1}{4}}$	(ix) $(82)^{\frac{1}{4}}$
(x) $(401)^{\frac{1}{2}}$	(xi) $(0.0037)^{\frac{1}{2}}$	(xii) $(26.57)^{\frac{1}{3}}$
(xiii) $(81.5)^{\frac{1}{4}}$	(xiv) $(3.968)^{\frac{3}{2}}$	(xv) $(32.15)^{\frac{1}{5}}$

Answer

(i) √25.3

Consider $y = \sqrt{x}$. Let x = 25 and $\Delta x = 0.3$. Then, $\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{25.3} - \sqrt{25} = \sqrt{25.3} - 5$ $\Rightarrow \sqrt{25.3} = \Delta y + 5$

Now, dy is approximately equal to Δy and is given by,

 $dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (0.3) \qquad \left[\text{as } y = \sqrt{x} \right]$ $= \frac{1}{2\sqrt{25}} (0.3) = 0.03$

Hence, the approximate value of $\sqrt{25.3}$ is 0.03 + 5 = 5.03.

(ii) √49.5

Consider $y = \sqrt{x}$. Let x = 49 and $\Delta x = 0.5$. Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{49.5} - \sqrt{49} = \sqrt{49.5} - 7$$
$$\Rightarrow \sqrt{49.5} = 7 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (0.5) \qquad \left[\text{as } y = \sqrt{x} \right]$$
$$= \frac{1}{2\sqrt{49}} (0.5) = \frac{1}{14} (0.5) = 0.035$$

Hence, the approximate value of $\sqrt{49.5}$ is 7 + 0.035 = 7.035.

Consider $y = \sqrt{x}$. Let x = 1 and $\Delta x = -0.4$. Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{0.6} - 1$$
$$\Rightarrow \sqrt{0.6} = 1 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} \left(\Delta x\right) \qquad \left[\text{as } y = \sqrt{x}\right]$$
$$= \frac{1}{2} \left(-0.4\right) = -0.2$$

Hence, the approximate value of $\sqrt{0.6}$ is 1 + (-0.2) = 1 - 0.2 = 0.8.

(iv)
$$(0.009)^{\frac{1}{3}}$$

Consider $y = x^{\frac{1}{3}}$. Let x = 0.008 and $\Delta x = 0.001$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - (x)^{\frac{1}{3}} = (0.009)^{\frac{1}{3}} - (0.008)^{\frac{1}{3}} = (0.009)^{\frac{1}{3}} - 0.2$$
$$\Rightarrow (0.009)^{\frac{1}{3}} = 0.2 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{3}} \right]$$
$$= \frac{1}{3 \times 0.04} (0.001) = \frac{0.001}{0.12} = 0.008$$

Hence, the approximate value of $(0.009)^{\frac{1}{3}}$ is 0.2 + 0.008 = 0.208.

(v)
$$(0.999)^{\frac{1}{10}}$$

Consider $y = (x)^{\frac{1}{10}}$. Let x = 1 and $\Delta x = -0.001$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{10}} - (x)^{\frac{1}{10}} = (0.999)^{\frac{1}{10}} - 1$$
$$\Rightarrow (0.999)^{\frac{1}{10}} = 1 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{10(x)^{\frac{9}{10}}} (\Delta x) \qquad \left[\text{as } y = (x)^{\frac{1}{10}} \right]$$
$$= \frac{1}{10} (-0.001) = -0.0001$$

Hence, the approximate value of $(0.999)^{\frac{1}{10}}$ is 1 + (-0.0001) = 0.9999.

(vi) $(15)^{\frac{1}{4}}$

Consider $y = x^{\frac{1}{4}}$. Let x = 16 and $\Delta x = -1$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}} = (15)^{\frac{1}{4}} - (16)^{\frac{1}{4}} = (15)^{\frac{1}{4}} - 2$$
$$\Rightarrow (15)^{\frac{1}{4}} = 2 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}} \right]$$
$$= \frac{1}{4(16)^{\frac{3}{4}}} (-1) = \frac{-1}{4 \times 8} = \frac{-1}{32} = -0.03125$$

Hence, the approximate value of $(15)^{\frac{1}{4}}$ is 2 + (-0.03125) = 1.96875.

(vii)
$$(26)^{\frac{1}{3}}$$

Consider $y = (x)^{\frac{1}{3}}$. Let x = 27 and $\Delta x = -1$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - (x)^{\frac{1}{3}} = (26)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26)^{\frac{1}{3}} - 3$$
$$\Rightarrow (26)^{\frac{1}{3}} = 3 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x) \qquad \left[\text{as } y = (x)^{\frac{1}{3}} \right]$$
$$= \frac{1}{3(27)^{\frac{2}{3}}} (-1) = \frac{-1}{27} = -0.0\overline{370}$$

Hence, the approximate value of $(26)^{\frac{1}{3}}$ is 3 + (-0.0370) = 2.9629.

(viii) $(255)^{\frac{1}{4}}$

Consider $y = (x)^{\frac{1}{4}}$. Let x = 256 and $\Delta x = -1$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (255)^{\frac{1}{4}} - (256)^{\frac{1}{4}} = (255)^{\frac{1}{4}} - 4$$
$$\Rightarrow (255)^{\frac{1}{4}} = 4 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}} \right]$$
$$= \frac{1}{4(256)^{\frac{3}{4}}} (-1) = \frac{-1}{4 \times 4^3} = -0.0039$$

Hence, the approximate value of $(255)^{\frac{1}{4}}$ is 4 + (-0.0039) = 3.9961.

(ix)
$$(82)^{\frac{1}{4}}$$

Consider $y = x^{\frac{1}{4}}$. Let x = 81 and $\Delta x = 1$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (82)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (82)^{\frac{1}{4}} - 3$$
$$\Rightarrow (82)^{\frac{1}{4}} = \Delta y + 3$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}} \right]$$
$$= \frac{1}{4(81)^{\frac{3}{4}}} (1) = \frac{1}{4(3)^3} = \frac{1}{108} = 0.009$$

Hence, the approximate value of $(82)^{\frac{1}{4}}$ is 3 + 0.009 = 3.009.

(x)
$$(401)^{\frac{1}{2}}$$

Consider $y = x^{\frac{1}{2}}$. Let x = 400 and $\Delta x = 1$. Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{401} - \sqrt{400} = \sqrt{401} - 20$$
$$\Rightarrow \sqrt{401} = 20 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} \left(\Delta x\right) \qquad \left[\text{as } y = x^{\frac{1}{2}} \right]$$
$$= \frac{1}{2 \times 20} (1) = \frac{1}{40} = 0.025$$

Hence, the approximate value of $\sqrt{401}$ is 20 + 0.025 = 20.025.

(xi) $(0.0037)^{\frac{1}{2}}$

Consider $y = x^{\frac{1}{2}}$. Let x = 0.0036 and $\Delta x = 0.0001$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{2}} - (x)^{\frac{1}{2}} = (0.0037)^{\frac{1}{2}} - (0.0036)^{\frac{1}{2}} = (0.0037)^{\frac{1}{2}} - 0.06$$
$$\Rightarrow (0.0037)^{\frac{1}{2}} = 0.06 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{2}} \right]$$
$$= \frac{1}{2 \times 0.06} (0.0001)$$
$$= \frac{0.0001}{0.12} = 0.00083$$

Thus, the approximate value of $(0.0037)^{\frac{1}{2}}$ is 0.06 + 0.00083 = 0.06083.

(xii) $(26.57)^{\frac{1}{3}}$

Consider $y = x^{\frac{1}{3}}$. Let x = 27 and $\Delta x = -0.43$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - x^{\frac{1}{3}} = (26.57)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26.57)^{\frac{1}{3}} - 3$$
$$\Rightarrow (26.57)^{\frac{1}{3}} = 3 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{3}} \right]$$
$$= \frac{1}{3(9)} (-0.43)$$
$$= \frac{-0.43}{27} = -0.015$$

Hence, the approximate value of $(26.57)^{\frac{1}{3}}$ is 3 + (-0.015) = 2.984.

(xiii) $(81.5)^{\frac{1}{4}}$

Consider $y = x^{\frac{1}{4}}$. Let x = 81 and $\Delta x = 0.5$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (81.5)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (81.5)^{\frac{1}{4}} - 3$$
$$\Rightarrow (81.5)^{\frac{1}{4}} = 3 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}} \right]$$
$$= \frac{1}{4(3)^{3}} (0.5) = \frac{0.5}{108} = 0.0046$$

Hence, the approximate value of $(81.5)^{\frac{1}{4}}$ is 3 + 0.0046 = 3.0046.

(xiv) $(3.968)^{\frac{3}{2}}$ Consider $y = x^{\frac{3}{2}}$. Let x = 4 and $\Delta x = -0.032$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{3}{2}} - x^{\frac{3}{2}} = (3.968)^{\frac{3}{2}} - (4)^{\frac{3}{2}} = (3.968)^{\frac{3}{2}} - 8$$
$$\Rightarrow (3.968)^{\frac{3}{2}} = 8 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{3}{2} (x)^{\frac{1}{2}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{3}{2}} \right]$$
$$= \frac{3}{2} (2) (-0.032)$$
$$= -0.096$$

Hence, the approximate value of $(3.968)^{\frac{3}{2}}$ is 8 + (-0.096) = 7.904.

(xv) $(32.15)^{\frac{1}{5}}$

Consider $y = x^{\frac{1}{5}}$. Let x = 32 and $\Delta x = 0.15$. Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{5}} - x^{\frac{1}{5}} = (32.15)^{\frac{1}{5}} - (32)^{\frac{1}{5}} = (32.15)^{\frac{1}{5}} - 2$$
$$\Rightarrow (32.15)^{\frac{1}{5}} = 2 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{5(x)^{\frac{4}{5}}} \cdot (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{5}} \right]$$
$$= \frac{1}{5 \times (2)^4} (0.15)$$
$$= \frac{0.15}{80} = 0.00187$$

Hence, the approximate value of $(32.15)^{\frac{1}{5}}$ is 2 + 0.00187 = 2.00187.

Question 2:

Find the approximate value of f(2.01), where $f(x) = 4x^2 + 5x + 2$

Answer

Let x = 2 and $\Delta x = 0.01$. Then, we have: $f(2.01) = f(x + \Delta x) = 4(x + \Delta x)^2 + 5(x + \Delta x) + 2$ Now, $\Delta y = f(x + \Delta x) - f(x)$

$$\Box f(x + \Delta x) = f(x) + \Delta y$$

$$\approx f(x) + f'(x) \cdot \Delta x \qquad (as \, dx = \Delta x)$$

$$\Rightarrow f(2.01) \approx (4x^2 + 5x + 2) + (8x + 5) \Delta x$$

$$= \left[4(2)^2 + 5(2) + 2 \right] + \left[8(2) + 5 \right] (0.01) \qquad [as \, x = 2, \, \Delta x = 0.01]$$

$$= (16 + 10 + 2) + (16 + 5) (0.01)$$

$$= 28 + (21) (0.01)$$

$$= 28 + 0.21$$

$$= 28.21$$

Hence, the approximate value of f(2.01) is 28.21.

Question 3:

Find the approximate value of f(5.001), where $f(x) = x^3 - 7x^2 + 15$.

Answer

Let x = 5 and $\Delta x = 0.001$. Then, we have: $f(5.001) = f(x + \Delta x) = (x + \Delta x)^3 - 7(x + \Delta x)^2 + 15$ Now, $\Delta y = f(x + \Delta x) - f(x)$ $\therefore f(x + \Delta x) = f(x) + \Delta y$ $\approx f(x) + f'(x) \cdot \Delta x$ (as $dx = \Delta x$) $\Rightarrow f(5.001) \approx (x^3 - 7x^2 + 15) + (3x^2 - 14x)\Delta x$ $= [(5)^3 - 7(5)^2 + 15] + [3(5)^2 - 14(5)](0.001)$ [$x = 5, \Delta x = 0.001$] = (125 - 175 + 15) + (75 - 70)(0.001) = -35 + (5)(0.001) = -35 + (5)(0.001) = -35 + 0.005= -34.995

Hence, the approximate value of f(5.001) is -34.995.

Question 4:

Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

Answer

The volume of a cube (V) of side x is given by $V = x^3$.

$$\therefore dV = \left(\frac{dV}{dx}\right) \Delta x$$

= $(3x^2) \Delta x$
= $(3x^2)(0.01x)$ [as 1% of x is 0.01x]
= $0.03x^3$

Hence, the approximate change in the volume of the cube is $0.03x^3$ m³.

Question 5:

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%

Answer

The surface area of a cube (*S*) of side *x* is given by $S = 6x^2$.

$$\therefore \frac{dS}{dx} = \left(\frac{dS}{dx}\right) \Delta x$$

= (12x) Δx
= (12x)(0.01x) [as 1% of x is 0.01x]
= 0.12x²

Hence, the approximate change in the surface area of the cube is $0.12x^2$ m².

Question 6:

If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.

Answer

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 7 m and $\Delta r = 0.02 \text{ m}$

Now, the volume V of the sphere is given by,

$$V = \frac{4}{3}\pi r^{3}$$

$$\therefore \frac{dV}{dr} = 4\pi r^{2}$$

$$\therefore dV = \left(\frac{dV}{dr}\right)\Delta r$$

$$= (4\pi r^{2})\Delta r$$

$$= 4\pi (7)^{2} (0.02) \text{ m}^{3} = 3.92\pi \text{ m}^{3}$$

Hence, the approximate error in calculating the volume is 3.92 nm^3 .

Question 7:

If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area.

Answer

Let r be the radius of the sphere and Δr be the error in measuring the radius. Then,

r = 9 m and $\Delta r = 0.03$ m

Now, the surface area of the sphere (S) is given by,

$$S = 4\pi r^{2}$$

$$\therefore \frac{dS}{dr} = 8\pi r$$

$$\therefore dS = \left(\frac{dS}{dr}\right)\Delta r$$

$$= (8\pi r)\Delta r$$

$$= 8\pi (9)(0.03) \text{ m}^{2}$$

$$= 2.16\pi \text{ m}^{2}$$

Hence, the approximate error in calculating the surface area is 2.16π m².

Question 8:

If $f(x) = 3x^2 + 15x + 5$, then the approximate value of f(3.02) is **A.** 47.66 **B.** 57.66 **C.** 67.66 **D.** 77.66 Answer

Let x = 3 and $\Delta x = 0.02$. Then, we have:

$$f(3.02) = f(x + \Delta x) = 3(x + \Delta x)^{2} + 15(x + \Delta x) + 5$$

Now, $\Delta y = f(x + \Delta x) - f(x)$
 $\Rightarrow f(x + \Delta x) = f(x) + \Delta y$
 $\approx f(x) + f'(x)\Delta x$ (As $dx = \Delta x$)
 $\Rightarrow f(3.02) \approx (3x^{2} + 15x + 5) + (6x + 15)\Delta x$
 $= [3(3)^{2} + 15(3) + 5] + [6(3) + 15](0.02)$ [As $x = 3$, $\Delta x = 0.02$]
 $= (27 + 45 + 5) + (18 + 15)(0.02)$
 $= 77 + (33)(0.02)$
 $= 77 + 0.66$
 $= 77.66$

Hence, the approximate value of f(3.02) is 77.66.

The correct answer is D.

Question 9:

The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x³ m³ **B.** 0.6 x³ m³ **C.** 0.09 x³ m³ **D.** 0.9 x³ m³

Answer

The volume of a cube (V) of side x is given by $V = x^3$.

$$\therefore dV = \left(\frac{dV}{dx}\right) \Delta x$$

= $(3x^2) \Delta x$
= $(3x^2)(0.03x)$ [As 3% of x is 0.03x]
= $0.09x^3$ m³

Hence, the approximate change in the volume of the cube is $0.09x^3$ m³. The correct answer is C.