(www.tiwariacademy.com: Focus on free education)

(Chapter - 7) (Integrals)

(Class - XII)

Exercise 7.5

Integrate the rational functions in Exercises 1 to 21.

Question 1: $\frac{x}{(x+1)(x+2)}$

Answer 1:

Let
$$\frac{x}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$
$$\Rightarrow x = A(x+2) + B(x+1)$$

Equating the coefficients of x and constant term, we obtain

$$A + B = 1$$

$$2A + B = 0$$

On solving, we obtain

$$A = -1$$
 and $B = 2$

$$\frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)} + \frac{2}{(x+2)}$$

$$\Rightarrow \int \frac{x}{(x+1)(x+2)} dx = \int \frac{-1}{(x+1)} + \frac{2}{(x+2)} dx$$

$$= -\log|x+1| + 2\log|x+2| + C$$

$$= \log(x+2)^2 - \log|x+1| + C$$

$$= \log\frac{(x+2)^2}{(x+1)} + C$$

Question 2: $\frac{1}{x^2-9}$

Answer 2:

Let
$$\frac{1}{(x+3)(x-3)} = \frac{A}{(x+3)} + \frac{B}{(x-3)}$$

 $1 = A(x-3) + B(x+3)$

Equating the coefficients of x and constant term, we obtain

$$A + B = 0$$

(www.tiwariacademy.com: Focus on free education)

(Chapter - 7) (Integrals)

(Class - XII)

$$-3A + 3B = 1$$

On solving, we obtain

$$A = -\frac{1}{6} \text{ and } B = \frac{1}{6}$$

$$\therefore \frac{1}{(x+3)(x-3)} = \frac{-1}{6(x+3)} + \frac{1}{6(x-3)}$$

$$\Rightarrow \int \frac{1}{(x^2-9)} dx = \int \left(\frac{-1}{6(x+3)} + \frac{1}{6(x-3)}\right) dx$$

$$= -\frac{1}{6} \log|x+3| + \frac{1}{6} \log|x-3| + C$$

$$= \frac{1}{6} \log\left|\frac{(x-3)}{(x+3)}\right| + C$$

Question 3:
$$\frac{3x-1}{(x-1)(x-2)(x-3)}$$

Answer 3:

Let
$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$
$$3x-1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \qquad \dots (1)$$

Equating the coefficients of x^2 , x and constant term, we obtain

$$A + B + C = 0$$

 $-5A - 4B - 3C = 3$
 $6A + 3B + 2C = -1$

Solving these equations, we obtain

$$A = 1$$
, $B = -5$, and $C = 4$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} - \frac{5}{(x-2)} + \frac{4}{(x-3)}$$

$$\Rightarrow \int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left\{ \frac{1}{(x-1)} - \frac{5}{(x-2)} + \frac{4}{(x-3)} \right\} dx$$

$$= \log|x-1| - 5\log|x-2| + 4\log|x-3| + C$$

Question 4:
$$\frac{x}{(x-1)(x-2)(x-3)}$$

Answer 4:

Let
$$\frac{x}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$

 $x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)$...(1)

Equating the coefficients of x^2 , x and constant term, we obtain

$$A + B + C = 0$$

 $-5A - 4B - 3C = 1$
 $6A + 4B + 2C = 0$

Solving these equations, we obtain

$$A = \frac{1}{2}, B = -2, \text{ and } C = \frac{3}{2}$$

$$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} - \frac{2}{(x-2)} + \frac{3}{2(x-3)}$$

$$\Rightarrow \int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left\{ \frac{1}{2(x-1)} - \frac{2}{(x-2)} + \frac{3}{2(x-3)} \right\} dx$$

$$= \frac{1}{2} \log|x-1| - 2\log|x-2| + \frac{3}{2} \log|x-3| + C$$

(www.tiwariacademy.com: Focus on free education)

$$(Chapter - 7) (Integrals)$$

Question 5:
$$\frac{2x}{x^2 + 3x + 2}$$

Answer 5:

Let
$$\frac{2x}{x^2 + 3x + 2} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$

$$2x = A(x+2) + B(x+1)$$
 ...(1)

Equating the coefficients of x^2 , x and constant term, we obtain

$$A + B = 2$$

$$2A + B = 0$$

Solving these equations, we obtain

$$A = -2$$
 and $B = 4$

$$\frac{2x}{(x+1)(x+2)} = \frac{-2}{(x+1)} + \frac{4}{(x+2)}$$

$$\Rightarrow \int \frac{2x}{(x+1)(x+2)} dx = \int \left\{ \frac{4}{(x+2)} - \frac{2}{(x+1)} \right\} dx$$

$$= 4\log|x+2| - 2\log|x+1| + C$$

Question 6:
$$\frac{1-x^2}{x(1-2x)}$$

Answer 6:

It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing $(1 - x^2)$ by x(1 - 2x), we obtain

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{1}{2} \left(\frac{2-x}{x(1-2x)} \right)$$

Let
$$\frac{2-x}{x(1-2x)} = \frac{A}{x} + \frac{B}{(1-2x)}$$

$$\Rightarrow (2-x) = A(1-2x) + Bx \qquad \dots (1)$$

Equating the coefficients of x^2 , x and constant term, we obtain

(www.tiwariacademy.com: Focus on free education)

(Chapter - 7) (Integrals)

$$-2A + B = -1$$

And
$$A = 2$$

Solving these equations, we obtain

$$A = 2$$
 and $B = 3$

$$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x} + \frac{3}{1-2x}$$

Substituting in equation (1), we obtain

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{1}{2} \left\{ \frac{2}{x} + \frac{3}{(1-2x)} \right\}$$

$$\Rightarrow \int \frac{1-x^2}{x(1-2x)} dx = \int \left\{ \frac{1}{2} + \frac{1}{2} \left(\frac{2}{x} + \frac{3}{1-2x} \right) \right\} dx$$

$$= \frac{x}{2} + \log|x| + \frac{3}{2(-2)} \log|1-2x| + C$$

$$= \frac{x}{2} + \log|x| - \frac{3}{4} \log|1-2x| + C$$

Question 7:
$$\frac{x}{(x^2+1)(x-1)}$$

Answer 7:

Let
$$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{(x^2+1)} + \frac{C}{(x-1)}$$

$$x = (Ax + B)(x-1) + C(x^2 + 1)$$

$$x = Ax^2 - Ax + Bx - B + Cx^2 + C$$

Equating the coefficients of x^2 , x, and constant term, we obtain

$$A + C = 0$$

$$-A + B = 1$$

$$-B + C = 0$$

On solving these equations, we obtain

$$A = -\frac{1}{2}$$
, $B = \frac{1}{2}$, and $C = \frac{1}{2}$

From equation (1), we obtain

(www.tiwariacademy.com: Focus on free education)

(Chapter - 7) (Integrals)

(Class - XII)

$$\frac{x}{(x^2+1)(x-1)} = \frac{\left(-\frac{1}{2}x + \frac{1}{2}\right)}{x^2+1} + \frac{\frac{1}{2}}{(x-1)}$$

$$\Rightarrow \int \frac{x}{(x^2+1)(x-1)} = -\frac{1}{2} \int \frac{x}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x-1} dx$$

$$= -\frac{1}{4} \int \frac{2x}{x^2+1} dx + \frac{1}{2} \tan^{-1} x + \frac{1}{2} \log|x-1| + C$$

Consider
$$\int \frac{2x}{x^2+1} dx$$
, let $(x^2+1) = t \Rightarrow 2x dx = dt$

$$\Rightarrow \int \frac{2x}{x^2 + 1} dx = \int \frac{dt}{t} = \log|t| = \log|x^2 + 1|$$

$$\therefore \int \frac{x}{(x^2+1)(x-1)} = -\frac{1}{4}\log|x^2+1| + \frac{1}{2}\tan^{-1}x + \frac{1}{2}\log|x-1| + C$$
$$= \frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1| + \frac{1}{2}\tan^{-1}x + C$$

Question 8:
$$\frac{x}{(x-1)^2(x+2)}$$

Answer 8:

Let
$$\frac{x}{(x-1)^2(x+2)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+2)}$$

 $x = A(x-1)(x+2) + B(x+2) + C(x-1)^2$

Substituting x = 1, we obtain

Equating the coefficients of x^2 , x and constant term, we obtain

$$A + C = 0$$

$$A + B - 2C = 1$$

$$-2A + 2B + C = 0$$

(www.tiwariacademy.com: Focus on free education)

$$(Chapter - 7) (Integrals)$$

(Class - XII)

$$A = \frac{2}{9}$$
 and $C = \frac{-2}{9}$

$$B=\frac{1}{3}$$

$$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)} + \frac{1}{3(x-1)^2} - \frac{2}{9(x+2)}$$

$$\Rightarrow \int \frac{x}{(x-1)^2(x+2)} dx = \frac{2}{9} \int \frac{1}{(x-1)} dx + \frac{1}{3} \int \frac{1}{(x-1)^2} dx - \frac{2}{9} \int \frac{1}{(x+2)} dx$$

$$= \frac{2}{9} \log|x-1| + \frac{1}{3} \left(\frac{-1}{x-1}\right) - \frac{2}{9} \log|x+2| + C$$

$$= \frac{2}{9} \log\left|\frac{x-1}{x+2}\right| - \frac{1}{3(x-1)} + C$$

Question 9:
$$\frac{3x+5}{x^3-x^2-x+1}$$

Answer 9:

$$\frac{3x+5}{x^3-x^2-x+1} = \frac{3x+5}{(x-1)^2(x+1)}$$

Let
$$\frac{3x+5}{(x-1)^2(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+1)}$$

$$3x+5 = A(x-1)(x+1) + B(x+1) + C(x-1)^{2}$$

$$3x+5 = A(x^{2}-1) + B(x+1) + C(x^{2}+1-2x) \qquad ...(1)$$

Equating the coefficients of x^2 , x and constant term, we obtain

$$A + C = 0$$

$$B - 2C = 3$$

$$-A + B + C = 5$$

$$B = 4$$

$$A = -\frac{1}{2}$$
 and $C = \frac{1}{2}$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\frac{3x+5}{(x-1)^2(x+1)} = \frac{-1}{2(x-1)} + \frac{4}{(x-1)^2} + \frac{1}{2(x+1)}$$

$$\Rightarrow \int \frac{3x+5}{(x-1)^2(x+1)} dx = -\frac{1}{2} \int \frac{1}{x-1} dx + 4 \int \frac{1}{(x-1)^2} dx + \frac{1}{2} \int \frac{1}{(x+1)} dx$$

$$= -\frac{1}{2} \log|x-1| + 4 \left(\frac{-1}{x-1}\right) + \frac{1}{2} \log|x+1| + C$$

$$= \frac{1}{2} \log\left|\frac{x+1}{x-1}\right| - \frac{4}{(x-1)} + C$$

Question 10:
$$\frac{2x-3}{(x^2-1)(2x+3)}$$

Answer 10:

$$\frac{2x-3}{(x^2-1)(2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$$
Let
$$\frac{2x-3}{(x+1)(x-1)(2x+3)} = \frac{A}{(x+1)} + \frac{B}{(x-1)} + \frac{C}{(2x+3)}$$

$$\Rightarrow (2x-3) = A(x-1)(2x+3) + B(x+1)(2x+3) + C(x+1)(x-1)$$

$$\Rightarrow (2x-3) = A(2x^2+x-3) + B(2x^2+5x+3) + C(x^2-1)$$

$$\Rightarrow (2x-3) = (2A+2B+C)x^2 + (A+5B)x + (-3A+3B-C)$$

Equating the coefficients of x^2 , x and constant, we obtain

$$2A + 2B + C = 0$$

 $A + 5B = 2$
 $- 3A + 3B - C = -3$

$$B = -\frac{1}{10}$$
, $A = \frac{5}{2}$, and $C = -\frac{24}{5}$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\therefore \frac{2x-3}{(x+1)(x-1)(2x+3)} = \frac{5}{2(x+1)} - \frac{1}{10(x-1)} - \frac{24}{5(2x+3)}$$

$$\Rightarrow \int \frac{2x-3}{(x^2-1)(2x+3)} dx = \frac{5}{2} \int \frac{1}{(x+1)} dx - \frac{1}{10} \int \frac{1}{x-1} dx - \frac{24}{5} \int \frac{1}{(2x+3)} dx$$

$$= \frac{5}{2} \log|x+1| - \frac{1}{10} \log|x-1| - \frac{24}{5 \times 2} \log|2x+3|$$

$$= \frac{5}{2} \log|x+1| - \frac{1}{10} \log|x-1| - \frac{12}{5} \log|2x+3| + C$$

Question 11:
$$\frac{5x}{(x+1)(x^2-4)}$$

Answer 11:

$$\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$$
Let
$$\frac{5x}{(x+1)(x+2)(x-2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)} + \frac{C}{(x-2)}$$

$$5x = A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2) \qquad \dots (1$$

Equating the coefficients of x^2 , x and constant, we obtain

$$A + B + C = 0$$

$$-B + 3C = 5$$
 and

$$-4A - 2B + 2C = 0$$

$$A = \frac{5}{3}$$
, $B = -\frac{5}{2}$, and $C = \frac{5}{6}$

$$\frac{5x}{(x+1)(x+2)(x-2)} = \frac{5}{3(x+1)} - \frac{5}{2(x+2)} + \frac{5}{6(x-2)}$$

$$\Rightarrow \int \frac{5x}{(x+1)(x^2-4)} dx = \frac{5}{3} \int \frac{1}{(x+1)} dx - \frac{5}{2} \int \frac{1}{(x+2)} dx + \frac{5}{6} \int \frac{1}{(x-2)} dx$$

$$= \frac{5}{3} \log|x+1| - \frac{5}{2} \log|x+2| + \frac{5}{6} \log|x-2| + C$$

(www.tiwariacademy.com: Focus on free education)

(Class - XII)

Question 12:
$$\frac{x^3 + x + 1}{x^2 - 1}$$

Answer 12:

It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing $(x^3 + x + 1)$ by $x^2 - 1$, we obtain

$$\frac{x^3 + x + 1}{x^2 - 1} = x + \frac{2x + 1}{x^2 - 1}$$
Let
$$\frac{2x + 1}{x^2 - 1} = \frac{A}{(x + 1)} + \frac{B}{(x - 1)}$$

$$2x + 1 = A(x - 1) + B(x + 1) \qquad \dots (1)$$

Equating the coefficients of x and constant, we obtain

$$A + B = 2$$

- $A + B = 1$

$$A = \frac{1}{2} \text{ and } B = \frac{3}{2}$$

$$\therefore \frac{x^3 + x + 1}{x^2 - 1} = x + \frac{1}{2(x + 1)} + \frac{3}{2(x - 1)}$$

$$\Rightarrow \int \frac{x^3 + x + 1}{x^2 - 1} dx = \int x dx + \frac{1}{2} \int \frac{1}{(x + 1)} dx + \frac{3}{2} \int \frac{1}{(x - 1)} dx$$

$$= \frac{x^2}{2} + \frac{1}{2} \log|x + 1| + \frac{3}{2} \log|x - 1| + C$$

(www.tiwariacademy.com: Focus on free education)

(Class - XII)

Question 13: $\frac{2}{(1-x)(1+x^2)}$

Answer 13:

Let
$$\frac{2}{(1-x)(1+x^2)} = \frac{A}{(1-x)} + \frac{Bx+C}{(1+x^2)}$$

 $2 = A(1+x^2) + (Bx+C)(1-x)$
 $2 = A + Ax^2 + Bx - Bx^2 + C - Cx$

Equating the coefficient of x^2 , x, and constant term, we obtain

$$A - B = 0$$

$$B - C = 0$$

$$A + C = 2$$

On solving these equations, we obtain

$$A = 1$$
, $B = 1$, and $C = 1$

$$\therefore \frac{2}{(1-x)(1+x^2)} = \frac{1}{1-x} + \frac{x+1}{1+x^2}$$

$$\Rightarrow \int \frac{2}{(1-x)(1+x^2)} dx = \int \frac{1}{1-x} dx + \int \frac{x}{1+x^2} dx + \int \frac{1}{1+x^2} dx$$

$$= -\int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{2x}{1+x^2} dx + \int \frac{1}{1+x^2} dx$$

$$= -\log|x-1| + \frac{1}{2}\log|1+x^2| + \tan^{-1}x + C$$

(www.tiwariacademy.com: Focus on free education)

(Class - XII)

Question 14: $\frac{3x-1}{(x+2)^2}$

Answer 14:

Let
$$\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)} + \frac{B}{(x+2)^2}$$

 $\Rightarrow 3x-1 = A(x+2) + B$

Equating the coefficient of x and constant term, we obtain

$$A = 3$$

$$2A + B = -1 \Rightarrow B = -7$$

$$\therefore \frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)} - \frac{7}{(x+2)^2}$$

$$\Rightarrow \int \frac{3x-1}{(x+2)^2} dx = 3 \int \frac{1}{(x+2)} dx - 7 \int \frac{x}{(x+2)^2} dx$$

$$= 3 \log|x+2| - 7 \left(\frac{-1}{(x+2)}\right) + C$$

$$= 3 \log|x+2| + \frac{7}{(x+2)} + C$$

Question 15: $\frac{1}{x^4-1}$

Answer 15

$$\frac{1}{(x^4 - 1)} = \frac{1}{(x^2 - 1)(x^2 + 1)} = \frac{1}{(x + 1)(x - 1)(1 + x^2)}$$
Let
$$\frac{1}{(x + 1)(x - 1)(1 + x^2)} = \frac{A}{(x + 1)} + \frac{B}{(x - 1)} + \frac{Cx + D}{(x^2 + 1)}$$

$$1 = A(x - 1)(x^2 + 1) + B(x + 1)(x^2 + 1) + (Cx + D)(x^2 - 1)$$

$$1 = A(x^3 + x - x^2 - 1) + B(x^3 + x + x^2 + 1) + Cx^3 + Dx^2 - Cx - D$$

$$1 = (A + B + C)x^3 + (-A + B + D)x^2 + (A + B - C)x + (-A + B - D)$$

Equating the coefficient of x^3 , x^2 , x, and constant term, we obtain

(www.tiwariacademy.com: Focus on free education)

$$(Chapter - 7) (Integrals)$$

(Class - XII)

$$A+B+C=0$$

$$-A + B + D = 0$$

$$A + B - C = 0$$

$$-A+B-D=1$$

On solving these equations, we obtain

$$A = -\frac{1}{4}, B = \frac{1}{4}, C = 0, \text{ and } D = -\frac{1}{2}$$

$$\therefore \frac{1}{x^4 - 1} = \frac{-1}{4(x+1)} + \frac{1}{4(x-1)} - \frac{1}{2(x^2 + 1)}$$

$$\Rightarrow \int \frac{1}{x^4 - 1} dx = -\frac{1}{4} \log|x - 1| + \frac{1}{4} \log|x - 1| - \frac{1}{2} \tan^{-1} x + C$$

 $=\frac{1}{4}\log\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\tan^{-1}x + C$

Question 16:
$$\frac{1}{x(x^n+1)}$$

[Hint: multiply numerator and denominator by x^{n-1} and put $x^n = t$]

Answer 16:

$$\frac{1}{x(x''+1)}$$

Multiplying numerator and denominator by x^{n-1} , we obtain

$$\frac{1}{x(x^{n}+1)} = \frac{x^{n-1}}{x^{n-1}x(x^{n}+1)} = \frac{x^{n-1}}{x^{n}(x^{n}+1)}$$

Let
$$x^n = t \implies x^{n-1} dx = dt$$

$$\therefore \int \frac{1}{x(x^n+1)} dx = \int \frac{x^{n-1}}{x^n(x^n+1)} dx = \frac{1}{n} \int \frac{1}{t(t+1)} dt$$

Let
$$\frac{1}{t(t+1)} = \frac{A}{t} + \frac{B}{(t+1)}$$

$$1 = A(1+t) + Bt \qquad \dots (1)$$

Equating the coefficients of t and constant, we obtain

$$A = 1$$
 and $B = -1$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\therefore \frac{1}{t(t+1)} = \frac{1}{t} - \frac{1}{(1+t)}$$

$$\Rightarrow \int \frac{1}{x(x''+1)} dx = \frac{1}{n} \int \left\{ \frac{1}{t} - \frac{1}{(t+1)} \right\} dx$$

$$= \frac{1}{n} \left[\log|t| - \log|t+1| \right] + C$$

$$= -\frac{1}{n} \left[\log|x''| - \log|x''+1| \right] + C$$

$$= \frac{1}{n} \log\left|\frac{x''}{x''+1}\right| + C$$

Question 17:
$$\frac{\cos x}{(1-\sin x)(2-\sin x)}$$
 [Hint: Put sin x = t]

Answer 17:

$$\frac{\cos x}{(1-\sin x)(2-\sin x)}$$
Let $\sin x = t \implies \cos x \, dx = dt$

$$\therefore \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx = \int \frac{dt}{(1-t)(2-t)}$$
Let $\frac{1}{(1-t)(2-t)} = \frac{A}{(1-t)} + \frac{B}{(2-t)}$

$$1 = A(2-t) + B(1-t) \qquad \dots (1)$$

Equating the coefficients of \boldsymbol{t} and constant, we obtain

$$-2A-B=0$$
 and

$$2A + B = 1$$

$$A = 1$$
 and $B = -1$

$$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx = \int \left\{ \frac{1}{1-t} - \frac{1}{(2-t)} \right\} dt$$

$$= -\log|1-t| + \log|2-t| + C$$

$$= \log\left|\frac{2-t}{1-t}\right| + C$$

$$= \log\left|\frac{2-\sin x}{1-\sin x}\right| + C$$

Question 18:
$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}$$

Answer 18:

$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = 1 - \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$$
Let
$$\frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{Ax+B}{(x^2+3)} + \frac{Cx+D}{(x^2+4)}$$

$$4x^2+10 = (Ax+B)(x^2+4) + (Cx+D)(x^2+3)$$

$$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$$

$$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(4B+3D)$$

Equating the coefficients of x^3 , x^2 , x, and constant term, we obtain

$$A + C = 0$$

$$B + D = 4$$

$$4A + 3C = 0$$

$$4B + 3D = 10$$

On solving these equations, we obtain

$$A = 0$$
, $B = -2$, $C = 0$, and $D = 6$

$$\therefore \frac{4x^2 + 10}{(x^2 + 3)(x^2 + 4)} = \frac{-2}{(x^2 + 3)} + \frac{6}{(x^2 + 4)}$$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = 1 - \left(\frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}\right)$$

$$\Rightarrow \int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx = \int \left\{1 + \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)}\right\} dx$$

$$= \int \left\{1 + \frac{2}{x^2 + (\sqrt{3})^2} - \frac{6}{x^2 + 2^2}\right\}$$

$$= x + 2\left(\frac{1}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}}\right) - 6\left(\frac{1}{2} \tan^{-1} \frac{x}{2}\right) + C$$

$$= x + \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} - 3 \tan^{-1} \frac{x}{2} + C$$

Question 19:
$$\frac{2x}{(x^2+1)(x^2+3)}$$

Answer 19:

$$\frac{2x}{\left(x^2+1\right)\left(x^2+3\right)}$$

Let $x^2 = t \Rightarrow 2x dx = dt$

$$\int \frac{2x}{(x^2+1)(x^2+3)} dx = \int \frac{dt}{(t+1)(t+3)}$$
...(1)

Let
$$\frac{1}{(t+1)(t+3)} = \frac{A}{(t+1)} + \frac{B}{(t+3)}$$

 $1 = A(t+3) + B(t+1)$...(1)

Equating the coefficients of t and constant, we obtain A + B = 0 and 3A + B = 1

(www.tiwariacademy.com: Focus on free education)

(Class - XII)

$$A = \frac{1}{2} \text{ and } B = -\frac{1}{2}$$

$$\therefore \frac{1}{(t+1)(t+3)} = \frac{1}{2(t+1)} - \frac{1}{2(t+3)}$$

$$\Rightarrow \int \frac{2x}{(x^2+1)(x^2+3)} dx = \int \left\{ \frac{1}{2(t+1)} - \frac{1}{2(t+3)} \right\} dt$$

$$= \frac{1}{2} \log |(t+1)| - \frac{1}{2} \log |t+3| + C$$

$$= \frac{1}{2} \log \left| \frac{t+1}{t+3} \right| + C$$

$$= \frac{1}{2} \log \left| \frac{x^2+1}{x^2+3} \right| + C$$

Question 20:
$$\frac{1}{x(x^4-1)}$$

Answer 20:

$$\frac{1}{x(x^4-1)}$$

Multiplying numerator and denominator by x^3 , we obtain

$$\frac{1}{x(x^4 - 1)} = \frac{x^3}{x^4(x^4 - 1)}$$
$$\therefore \int \frac{1}{x(x^4 - 1)} dx = \int \frac{x^3}{x^4(x^4 - 1)} dx$$

Let
$$x^4 = t \Rightarrow 4x^3dx = dt$$

$$\therefore \int \frac{1}{x(x^4-1)} dx = \frac{1}{4} \int \frac{dt}{t(t-1)}$$

Let
$$\frac{1}{t(t-1)} = \frac{A}{t} + \frac{B}{(t-1)}$$

$$1 = A(t-1) + Bt$$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

Equating the coefficients of t and constant, we obtain

$$A = -1$$
 and $B = 1$

$$\Rightarrow \frac{1}{t(t+1)} = \frac{-1}{t} + \frac{1}{t-1}$$

$$\Rightarrow \int \frac{1}{x(x^4 - 1)} dx = \frac{1}{4} \int \left\{ \frac{-1}{t} + \frac{1}{t-1} \right\} dt$$

$$= \frac{1}{4} \left[-\log|t| + \log|t-1| \right] + C$$

$$= \frac{1}{4} \log\left| \frac{t-1}{t} \right| + C$$

$$= \frac{1}{4} \log\left| \frac{x^4 - 1}{x^4} \right| + C$$

Question 21: $\frac{1}{(e^x-1)}$ [Hint: Put $e^x = t$]

Answer 21:

$$\frac{1}{(e^x-1)}$$

Let $e^x = t \Rightarrow e^x dx = dt$

$$\Rightarrow \int \frac{1}{e^x - 1} dx = \int \frac{1}{t - 1} \times \frac{dt}{t} = \int \frac{1}{t(t - 1)} dt$$
Let
$$\frac{1}{t(t - 1)} = \frac{A}{t} + \frac{B}{t - 1}$$

$$1 = A(t - 1) + Bt \qquad \dots(1)$$

Equating the coefficients of t and constant, we obtain

(www.tiwariacademy.com: Focus on free education)

$$\therefore \frac{1}{t(t-1)} = \frac{-1}{t} + \frac{1}{t-1}$$

$$\Rightarrow \int \frac{1}{t(t-1)} dt = \log \left| \frac{t-1}{t} \right| + C$$

$$= \log \left| \frac{e^x - 1}{e^x} \right| + C$$

Question 22:

$$\int \frac{xdx}{(x-1)(x-2)} equals$$

A.
$$\log \left| \frac{\left(x - 1 \right)^2}{x - 2} \right| + C$$

B.
$$\log \left| \frac{(x-2)^2}{x-1} \right| + C$$

C.
$$\log \left| \left(\frac{x-1}{x-2} \right)^2 \right| + C$$

D.
$$\log |(x-1)(x-2)| + C$$

Answer 22:

Let
$$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-2)}$$

 $x = A(x-2) + B(x-1)$...(1)

Equating the coefficients of x and constant, we obtain

$$A = -1$$
 and $B = 2$

(www.tiwariacademy.com: Focus on free education)

(Chapter – 7) (Integrals)

(Class - XII)

$$\frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)} + \frac{2}{(x-2)}$$

$$\Rightarrow \int \frac{x}{(x-1)(x-2)} dx = \int \left\{ \frac{-1}{(x-1)} + \frac{2}{(x-2)} \right\} dx$$

$$= -\log|x-1| + 2\log|x-2| + C$$

$$= \log\left|\frac{(x-2)^2}{x-1}\right| + C$$

Hence, the correct Answer is B.

Question 23:

$$\int \frac{dx}{x(x^2+1)} equals$$

A.
$$\log |x| - \frac{1}{2} \log (x^2 + 1) + C$$

B.
$$\log |x| + \frac{1}{2} \log (x^2 + 1) + C$$

C.
$$-\log|x| + \frac{1}{2}\log(x^2 + 1) + C$$

D.
$$\frac{1}{2}\log|x| + \log(x^2 + 1) + C$$

Answer 23:

Let
$$\frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

$$1 = A(x^2 + 1) + (Bx + C)x$$

Equating the coefficients of x^2 , x, and constant term, we obtain

$$A + B = 0$$

$$C = 0$$

$$A = 1$$

(www.tiwariacademy.com: Focus on free education)

(Chapter - 7) (Integrals)

(Class - XII)

On solving these equations, we obtain

$$A = 1$$
, $B = -1$, and $C = 0$

Hence, the correct Answer is A.