Mathematics

(www.tiwariacademy.com) (Chapter – 15)(Probability) (Class – 9)

Exercise 15.1

Question 1:

In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Answer 1:

Total number of balls = 30Number of balls having boundary = 6Therefore, the number of balls not having boundary = 30 - 6 = 24

P(She did not hit a boundary)
$$=\frac{24}{30}=\frac{4}{5}=0.8$$

Hence, the probability of not hitting a boundary by her is 0.8.

Question 2:

1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having

(i) 2 girls (ii) 1 girl (iii) No girl Also check whether the sum of these probabilities is 1.

Answer 2:

(i) Total number of families = 1500 Number of families with 2 girls = 475 Therefore,

$$P(2 \text{ girls}) = \frac{475}{1500} = \frac{19}{60}$$

Hence, the probability of family having two girls is $\frac{19}{60}$.

(ii) Number of families with 1 girl = 814 Therefore,

$$P(1\,\text{girl}) = \frac{814}{1500} = \frac{407}{750}$$

Hence, the probability of family having 1 girl is $\frac{407}{750}$.

(iii) Number of families with no girl = 211 Therefore,

$$P(\text{No girl}) = \frac{211}{1500}$$

Hence, the probability of family having no girl is $\frac{211}{1500}$.

Question 3:

Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.

🛃 Answer 3:

Example 5, Section 14.4, Chapter 14 is given below: In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

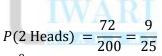
www.tiwariacademy.com

Total number of students = 40 Number of students born in August = 6 Therefore,

$$P(\text{Student born in August}) = \frac{6}{40} = \frac{3}{20}$$

Hence, the probability that the student born in August is $\frac{3}{20}$.

Question 4:


Three coins are tossed simultan	coins are tossed simultaneously 200 times with the following frequencies of different outcomes			tcomes:	
Outcome	3 Heads	2 Heads	1 Head	0 Head	
D	22	70		20	

 Frequency
 23
 72
 77
 28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Answer 4:

Total number of tosses = 200 Number of getting 2 Heads = 72 Therefore,

Hence, the probability of getting 2 Heads is $\frac{9}{25}$.

Question 5:

An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income		Vehicles p	per family	
(in ₹)	0	1	2	Above 2
Less than 7000	10	160	25	0
7000 - 10000	0	305	27	2
10000 - 13000	1	535	29	1
13000 - 16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is

(i) earning ₹10000 – 13000 per month and owning exactly 2 vehicles.

(ii) earning ₹16000 or more per month and owning exactly 1 vehicle.

(iii) earning less than ₹7000 per month and does not own any vehicle.

(iv) earning ₹13000 – 16000 per month and owning more than 2 vehicles.

(v) owning not more than 1 vehicle.

www.tiwariacademy.com

Mathematics

(www.tiwariacademy.com) (Chapter – 15)(Probability) (Class – 9)

E Answer 5:

(i) Total number of families = 2400

Number of families who has earning ₹10000 – 13000 per month and owning exactly 2 vehicles = 29 Therefore,

Probability
$$=\frac{29}{2400}$$

Hence, the probability of families earning ₹10000 – 13000 per month and owning exactly 2 vehicles is $\frac{29}{2400}$.

(ii) Total number of families = 2400

Number of families who has earning ₹16000 or more per month and owning exactly 1 vehicle = 579 Therefore,

Probability
$$=\frac{579}{2400}=\frac{193}{800}$$

Hence, the probability of earning ₹16000 or more per month and owning exactly 1 vehicle is $\frac{579}{2400}$. (iii) Total number of families = 2400

Number of families who has earning less than ₹7000 per month and does not own any vehicle = 10 Therefore,

Probability
$$=\frac{10}{2400}=\frac{1}{2400}$$

Hence, the probability of earning less than ₹7000 per month and does not own any vehicle is $\frac{1}{240}$.

(iv) Total number of families = 2400

Number of families who are earning ₹13000 – 16000 per month and owning more than 2 vehicles = 10 Therefore,

Probability
$$= \frac{25}{2400} = \frac{1}{96}$$

Hence, the probability of earning ₹13000 – 16000 per month and owning more than 2 vehicles is $\frac{1}{2}$.

(v) Total number of families = 2400

Number of families who are owning not more than 1 vehicle = 10 + 0 + 1 + 2 + 1 + 160 + 305 + 535 + 469 + 579 = 2062Therefore,

Probability
$$=\frac{2062}{2400}=\frac{1031}{1200}$$

Hence, the probability of owning not more than 1 vehicle is $\frac{1031}{1200}$.

Question 6:

Refer to Table 14.7, Chapter 14.

(i) Find the probability that a student obtained less than 20% in the mathematics test.

(ii) Find the probability that a student obtained marks 60 or above.

Answer 6:

Table 14.7, Chapter 14:

Marks	Number of students
0 - 20	7
20 - 30	10
30 - 40	10
40 – 50	20
50 - 60	20
60 - 70	15
70 – and above	8
Total	90

www.tiwariacademy.com

Mathematics (www.tiwariacademy.com) (Chapter – 15)(Probability)

(Class – 9)

(i) Total number of students = 90

Number of students obtaining less than 20% in the mathematics test 20% = 7 Therefore,

Probability
$$=\frac{7}{90}$$

Hence, the probability that a student obtained less than 20% in the mathematics test is $\frac{7}{90}$.

(ii) Total number of students = 90

Number of students obtaining marks 60 or above = 15 + 8 = 23 Therefore,

Probability
$$=\frac{23}{90}$$

Hence, the probability that a student obtained marks 60 or above is $\frac{23}{90}$.

Question 7:

To know the opinion of the students about the subject *statistics*, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65
Find the probability that a student chosen a	t random
(i) likes statistics,	(ii) does not like it.
Answer 7:	
(i) Total number of students = 200 Number of students who like Statistics = 13 Therefore,	
P(studen	t likes Statistics) = $\frac{135}{200} = \frac{27}{40}$
Hence, the probability that a student likes S	$200 40$ tatistics is $\frac{27}{2}$.
	40
(ii) Total number of students = 200 Number of students who dislike Statistics = Therefore, P(students Hence, the probability that a student dislike	65 dislike Statistics) = $\frac{65}{200} = \frac{13}{40}$
Question 8: Refer to Q.2, Exercise 14.2. What is the emp (i) less than 7 km from her place of work? (ii) more than or equal to 7 km from her pl (iii) within $\frac{1}{2}$ km from her place of work?	
Answer 8:	
Q.2, Exercise 14.2 is given below:	hair regiden as to their place of such such formed as falls
5 3 10 20 25	heir residence to their place of work were found as follow 11 13 7 12 31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 9 7 8 3	5 12 15 18 3
12 14 2 9 6	15 15 7 6 12
	ww.tiwariacademv.com

www.tiwariacademy.com

Mathematics (www.tiwariacademy.com) (Chapter – 15)(Probability) (Class – 9)

Arranging the data in ascending order:

2, 2, 3, 3, 3, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 12, 13, 14, 15, 15, 15, 16, 17, 17, 18, 18, 19, 20, 25, 31, 32.

(i) Total number of engineers = 200

Number of engineers who lives less than 7 km from her place of work = 9 Therefore.

P(an engineer lives less than 7 km from her place of work) = $\frac{9}{40}$

Hence, the probability that an engineer lives less than 7 km from her place of work is $\frac{9}{40}$

(ii) Total number of engineers = 200

Number of engineers who lives more than or equal to 7 km from her place of work = 31 Therefore,

P(an engineer lives more than or equal to 7 km from her place of work) = $\frac{31}{40}$

Hence, the probability that an engineer lives more than or equal to 7 km from her place of work is $\frac{31}{40}$.

(iii) Total number of engineers = 200

Number of engineers who lives within $\frac{1}{2}$ km from her place of work = 0

Therefore,

P (an engineer lives within
$$\frac{1}{2}$$
 km from her place of work) = $\frac{0}{40} = 0$

Hence, the probability that an engineer lives within $\frac{1}{2}$ km from her place of work is 0.

Question 9:

Activity: Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

Answer 9:

The frequency table of the two-wheelers, three-wheelers and four-wheelers going past during 2:30 pm to 3:30 pm in front of our school is given below:

Vehicle	Two-wheelers	Three-wheelers	Four-wheelers	Total
Frequency	12	7	9	28

Total number of vehicles = 28 and number of two-wheelers = 12 Therefore,

$$P(two - wheelers) = \frac{12}{28} = \frac{3}{7}$$

Hence, the probability of two-wheelers is $\frac{3}{7}$.

Question 10:

Activity: Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3? Remember that a number is divisible by 3, if the sum of its digits is divisible by 3.

Answer 10:

Given 3-digit numbers = 100, 101, 102 ...999 and total number of 3-digit numbers = 999 – 99 = 900 Numbers divisible by 3 = 102, 105, 108 ...999. So, the number of numbers divisible by 3 = 300 Therefore,

P(number divisible by 3) =
$$\frac{300}{900} = \frac{1}{3}$$

Hence, the probability that the number written by her/him is divisible by 3 is $\frac{1}{3}$.

www.tiwariacademy.com A Step towards free Education

Mathematics (www.tiwariacademy.com) (Chapter - 15)(Probability)

(Class - 9)

Question 11:

Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg): 4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Answer 11:

Arranging the data in ascending order: 4.97, 4.98, 5.00, 5.00, 5.03, 5.04, 5.05, 5.06, 5.07, 5.08, 5.08 Total number of flour bags = 11 and number of bags containing more than 5 kg of flour = 7 Therefore,

P(a bag contains more than 5 kg of flour) = $\frac{7}{11}$

Hence, the probability that any of these bags chosen at random contains more than 5 kg of flour is $\frac{7}{14}$.

Question 12:

In 0.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 - 0.16 on any of these days.

Answer 12:

Q.5 of Exercise 14.2 is given below:

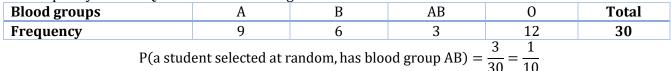
A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:

0.03	0.08	0.08	0.09	0.04	0.17
0.16	0.05	0.02	0.06	0.18	0.20
0.11	0.08	0.12	0.13	0.22	0.07
0.08	0.01	0.10	0.06	0.09	0.18
0.11	0.07	0.05	0.07	0.01	0.04

The grouped frequency distribution table for this data is as follows:

Number of days (Frequency)
4
9
9
2
4
2
30

P(Concentration of sulphur dioxide in the interval 0.12 - 0.16) = $\frac{2}{30} = \frac{1}{15}$


Hence, the probability of the concentration of sulphur dioxide in the interval 0.12 - 0.16 on any of day is $\frac{1}{10}$

Question 13:

In 0.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Answer 13:

The frequency table of Q.1 of Exercise 14.2 is given below:

Hence, the probability that a student of this class, selected at random, has blood group AB is $\frac{1}{10}$.

www.tiwariacademy.com A Step towards free Education