# **Mathematics**

(www.tiwariacademy.com)
(Chapter - 7) (Triangles)
(Class - 9)
Exercise 7.2

# Question 1:

In an isosceles triangle ABC, with AB = AC, the bisectors of  $\angle$ B and  $\angle$ C intersect each other at O. Join A to O. Show that:

- (i) OB = OC
- (ii) AO bisects ∠A

## Answer 1:

(i) In ABC, AB = AC [: Given]

Hence,  $\angle ACB = \angle ABC$  [: Angles opposite to equal sides are equal]

 $\Rightarrow \frac{1}{2} \angle ACB = \frac{1}{2} \angle ABC$ 

 $\Rightarrow \angle ACO = \angle ABO$  [: OB and OC bisect  $\angle B$  and  $\angle C$  respectively]

In  $\triangle$ ABO and  $\triangle$ ACO,

AB = AC [: Given]

 $\angle ABO = \angle ACO$  [: Proved above] AO = AO [: Common]

Hence,  $\triangle ABO \cong \triangle ACO$  [: SAS Congruency Rule]

OB = OC [: CPCT]

(ii)  $\triangle ABO \cong \triangle ACO$  [: Proved above]

 $\angle BAO = \angle CAO$  [: CPCT]

Hence, OA bisects angle A.

# **Question 2:**

In  $\triangle$ ABC, AD is the perpendicular bisector of BC (see Figure). Show that  $\triangle$ ABC is an isosceles triangle in which AB = AC.

#### f<sub>wari</sub> Answer 2:

In  $\triangle$ ABD and  $\triangle$ ACD,

BD = DC [∵ AD bisects BC] D E M Y

 $\angle ADB = \angle ADC$  [: Each 90°] AD = AD [: Common]

Hence,  $\triangle ABD \cong \triangle ACD$  [: SAS Congruency Rule]

AB = AC [: CPCT]

Hence, ΔABC is an isosceles triangle.

# IWAKI



# **Question 3:**

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Figure). Show that these altitudes are equal.

#### Answer 3:

In  $\triangle$ ABE and  $\triangle$ ACF,

 $\angle AEB = \angle AFC$  [: Each 90°]  $\angle A = \angle A$  [: Common] AB = AC [: Given]

Hence,  $\triangle ABE \cong \triangle ACF$  [: AAS Congruency Rule]

BE = CF [: CPCT]

#### www.tiwariacademy.com

A Step towards free Education

# **Mathematics**

(www.tiwariacademy.com)
(Chapter – 7) (Triangles)
(Class – 9)

# **Question 4:**

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Figure). Show that

- (i)  $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC, i.e., ABC is an isosceles triangle.

#### **Answer 4:**

(i) In  $\triangle$ ABE and  $\triangle$ ACF,

 $\angle AEB = \angle AFC$  [: Each 90°]  $\angle A = \angle A$  [: Common] BE = CF [: Given]

Hence,  $\triangle ABE \cong \triangle ACF$  [: AAS Congruency Rule]

(ii) In  $\triangle ABE \cong \triangle ACF$  [: Proved above]

AB = AC [: CPCT]

Hence,  $\triangle$ ABC is an isosceles triangle.



### **Question 5:**

ABC and DBC are two isosceles triangles on the same base BC (see Figure). Show that  $\angle$ ABD =  $\angle$ ACD.

#### Answer 5:

In ΔABC,

AB = AC [: Given]

 $\angle ABC = \angle ACB$  ... (1) [: Angles opposite to equal sides are equal]

In ΔDBC,

DB = DC [: Given]

 $\angle DBC = \angle DCB$  ... (2) [: Angles opposite to equal sides are equal]

Adding equation (1) and (2), we get

 $\angle ABC + \angle DBC = \angle ACB + \angle DCB$ 

 $\Rightarrow \angle ABD = \angle ACD$ 



# **Question 6:**

 $\triangle$ ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Figure). Show that  $\angle$ BCD is a right angle.

#### Answer 6:

In ΔACD,

AB = AC [: Given]

 $\angle ACD = \angle D$  ... (1) [: Angles opposite to equal sides are equal]

In ΔABC,

AB = AC [: Given]

 $\angle B = \angle ACB$  ... (2) [: Angles opposite to equal sides are equal]

In ΔDBC,

 $\angle D + \angle B + \angle BCD = 180^{\circ}$ 

 $\Rightarrow$ ∠ACD + ∠ACB + ∠BCD = 180° [: From the equation (1) and (2)]

 $\Rightarrow \angle BCD + \angle BCD = 180^{\circ}$  [:: $\angle ACD + \angle ACB = \angle BCD$ ]

⇒ 2∠BCD = 180°

 $\Rightarrow \angle BCD = \frac{180^{\circ}}{2} = 90^{\circ}$ 

Hence, ∠BCD is a right angle.

www.tiwariacademy.com

A Step towards free Education

# **Mathematics**

(www.tiwariacademy.com)
(Chapter – 7) (Triangles)
(Class – 9)

# **Question 7:**

ABC is a right angled triangle in which  $\angle A = 90^{\circ}$  and AB = AC. Find  $\angle B$  and  $\angle C$ .

#### Answer 7:

In ΔABC,

AB = AC [: Given]

 $\angle B = \angle C$  [: Angles opposite to equal sides are equal]

In ΔABC,

 $\angle A + \angle B + \angle C = 180^{\circ}$ 

 $\Rightarrow$  90° +  $\angle$ B +  $\angle$ C = 180° [:

 $[\because \angle A = 90^{\circ}]$ 

 $\Rightarrow 90^{\circ} + \angle B + \angle B = 180^{\circ}$ 

 $[\because \angle C = \angle B]$ 

 $\Rightarrow 2\angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$ 

 $\Rightarrow \angle B = \frac{90^{\circ}}{2} = 45^{\circ}$ 

Hence,  $\angle B = \angle C = 90^{\circ}$ 



## **Question 8:**

Show that the angles of an equilateral triangle are 60° each.

### Answer 8:

In ΔABC,

AB = AC

[∵ Given]

 $\angle C = \angle B$ 

... (1) [: Angles opposite to equal sides are equal]

Similarly,

In ΔABC,

AB = BC

[∵ Given]

 $\angle C = \angle A$ 

... (2) [: Angles opposite to equal sides are equal]

From the equation (1) and (2), we have

 $\angle A = \angle B = \angle C$ 

... (3)

In ΔABC,

 $\angle A + \angle B + \angle C = 180^{\circ}$ 

 $\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$ 

[: From the equaion (3)]

⇒ 3∠A = 180°

$$\Rightarrow \angle A = \frac{180^{\circ}}{3} = 60^{\circ}$$

Hence,  $\angle A = \angle B = \angle C = 60^{\circ}$ 



A Step towards free Education