Mathematics

(www.tiwariacademy.com)

(Chapter - 7) (Triangles) (Class - 9)

Exercise 7.3

Question 1:

ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Figure). If AD is extended to intersect BC at P, show that

(i) $\triangle ABD \cong \triangle ACD$

(iii) AP bisects $\angle A$ as well as $\angle D$.

(iv) AP is the perpendicular bisector of BC.

(i) In \triangle ABD and \triangle ACD.

[∵ Given] AB = ACBD = CD[: Given] AD = AD[: Common]

Hence, $\triangle ABD \cong \triangle ACD$ [: SSS Congruency Rule]

(ii) In $\triangle ABD \cong \triangle ACD$ [: Proved above]

 $\angle BAD = \angle CAD$ [: CPCT]

In \triangle ABP and \triangle ACP.

AB = AC[: Given]

 $\angle BAP = \angle CAP$ [: Proved above] AP = AP[: Common]

[: SAS Congruency Rule] Hence, $\triangle ABP \cong \triangle ACP$

(iii) In $\triangle ABD \cong \triangle ACD$ [: Proved above]

 $\angle BAD = \angle CAD$ [: CPCT] $\angle BDA = \angle CDA$ [: CPCT] Hence, AP bisects both the angles A and D.

(iv) In $\triangle ABP \cong \triangle ACP$ [: Proved above]

BP = CP[: CPCT] $\angle BPA = \angle CPA$

[: CPCT] $\angle BPA + \angle CPA = 180^{\circ}$

[: Linear Pair]

 $[\because \angle BPA = \angle CPA]$ $\Rightarrow \angle CPA + \angle CPA = 180^{\circ}$

 $\Rightarrow \angle CPA = \frac{180^{\circ}}{2} = 90^{\circ}$ ⇒ 2∠CPA = 180°

 \Rightarrow AP is perpendicular to BC. \Rightarrow AP is perpendicular bisector of BC. [: BP = CP]

Ouestion 2:

AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects ∠A.

Answer 2:

(i) In \triangle ABD and \triangle ACD,

 $\angle ADB = \angle ADC$ [∵ Each 90°] AB = AC[: Given] [: Common] AD = AD

Hence, $\triangle ABD \cong \triangle ACD$ [: RHS Congruency Rule]

BD = DC[: CPCT]

Hence, AD bisects BC.

(ii) $\angle BAD = \angle CAD$ [: CPCT]

Hence, AD bisects angle A.

A Step towards free Education

Mathematics

(www.tiwariacademy.com)

(Chapter - 7) (Triangles)
(Class - 9)

· · · · · ·

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Figure). Show that:

- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

East Answer 3:

(i) Given that: BC = QR

⇒ $\frac{1}{2}$ BC = $\frac{1}{2}$ QR ⇒ BM = QN [: AM and PN are medians]

In \triangle ABM and \triangle PQN,

AB = PQ [: Given] AM = PN [: Given]

BM = QN [: Proved Above]

Hence, $\triangle ABM \cong \triangle PQN$ [: SSS Congruency Rule]

(ii) In $\triangle ABM \cong \triangle PQN$ [: Prvoed Above]

 $\angle B = \angle Q$ [:: CPCT]

In \triangle ABC and \triangle PQR,

AB = PQ [: Given]

 $\angle B = \angle Q$ [: Proved Above]

BC = QR [: Given]

Hence, $\triangle ABC \cong \triangle PQR$ [: SAS Congruency Rule]

Question 4:

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Emari Answer 4:

In \triangle FBC and \triangle ECB,

 $\angle BFC = \angle CEB$ [: Each 90°] C A D E M Y

BC = BC [: Common] FC = BE [: Given]

Hence, $\Delta FBC \cong \Delta ECB$ [: RHS Congruency Rule]

 $\angle FBC = \angle ECB$ [: CPCT]

 \Rightarrow AC = AB [: Angles opposite to equal sides are equal]

Hence, \triangle ABC is an isosceles triangle.

Question 5:

ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B = \angle C.

In \triangle ABP and \triangle ACP,

 $\angle APB = \angle APC$ [: Each 90°] AB = AC [: Given] AP = AP [: Common]

Hence, $\triangle ABP \cong \triangle ACP$ [: RHS Congruency Rule]

 $\angle B = \angle C$ [: CPCT]

B

www.tiwariacademy.com

A Step towards free Education