NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1 Continuity and Differentiability in Hindi Medium as well as English Medium for the students using NCERT Books for their studies based on Latest CBSE Syllabus 2018-2019. These solutions are applicable for CBSE Board, Uttarakhand Board (who are using NCERT), Bihar Board and MP, UP Board from 2018 onward.

## NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1

### Class 12 Maths Chapter 5 Exercise 5.1 Continuity and Differentiability in English

NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1 Continuity and Differentiability in English medium free to download or use online. In this chapter you will find the point of discontinuity of a function using left hand limit and right hand limits. Click here to get the solutions of other exercises of Class 12 Mathematics Chapter 5, If you need Solutions in Hindi, CLICK HERE for Hindi Medium Solutions.

**Click HERE to SEE MORE ANSWERS**

### Class 12 Maths Chapter 5 Exercise 5.1 सांतत्य तथा अवकलनीयता के हल हिंदी में

कक्षा १२ गणित के पाठ ५ की प्रश्नावली ५.१ सांतत्य तथा अवकलनीयता के हल हिंदी में नीचे दिए गए हैं। इस प्रश्नावली में बाएँ पक्ष के सीमा तथा दाएँ पक्ष की सीमा ज्ञात करके हम किसी फलन के सांतत्य की जाँच कर सकते हैं। Click here to get the solutions of other exercises of Class 12 Mathematics Chapter 5, Go back to English Medium Solutions.

**शेष प्रश्नों को देखने के लिए यहाँ क्लिक करें**

Go Back to Top of English Medium Solutions & Hindi Medium Solutions.

#### How to Prove Continuity of a Function

If the left hand limit (LHL), right hand limit (RHL) and the value of function at any point is same, the function is called a continuous function at that point. For the functions containing modulus function, it is better to redefine the function on the basis of the range of modulus and then check the continuity of the function. Polynomial function, sine, cosine functions are always continuous at all real values. If any function is already continuous, then we can find the unknown values (just like question number 26 to question 29), by using the relation LHL = RHL = f(x) at the point where the function is continuous.

Deepak Kumar says

Deepak Kumar I Love you bhai

rahul ojha says

Hindi ka pdf kaha se download hoga

Nahi ho rha hai

saurav says

Osmmmm

saurav says

Apako send karane tak wait karunga bhai plzzz