NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.4 free to download or use online in Hindi Medium as well as English Medium for CBSE Board, Uttarakhand, Bihar and UP Board, who are following NCERT as course books for 2018-19 session.

Table of Contents

## NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.4

### Class 12 Maths Chapter 5 Exercise 5.4 Solutions in English

12 Maths Chapter 5 Exercise 5.4 solutions in English medium is given below. In this exercise, we have learn about the derivatives of exponential and logarithm functions. Click here to get the solutions of other exercises of Class 12 Mathematics Chapter 5, If you need Solutions in Hindi, CLICK HERE for Hindi Medium Solutions.

### Class 12 Maths Chapter 5 Exercise 5.4 के हल हिंदी में

12 Maths Chapter 5 Exercise 5.4 Solutions in Hindi Medium. इससे पहले हम बहुपद फलन, त्रिकोणमितीय फलन तथा परिमेय फलन आदि के अवकलज प्राप्त करना सीखा है। इस प्रशनावली में चरघातांकी तथा लघुगुणकीय फलनों के अवकलज ज्ञात करना सींखेंगे। Click here to get the solutions of other exercises of Class 12 Mathematics Chapter 5, Go back to English Medium Solutions.

Go Back to Top of English Medium Solutions & Hindi Medium Solutions.

#### About 12 Maths Exercise 5.4

So far we have done the derivatives polynomials, rational numbers, trigonometric functions and tested the differentiability of modulus function, greatest integer function, etc. Now we have to deal with exponential and logarithm functions. So, we must know about the properties of log, which will be very useful for Exercise 5.5.

- log ab = log a = log b
- log a/b = log a – log b
- lag a^b = b log a

If any function is given as the sum of two exponential function, we can’t take log directly (This is the common mistake done by most of the students). We should differentiate the two functions separately and combine them to get the final answer.

log function में योग का कोई नियम नहीं होता है। अर्थात log (a + b) ≠ log a + log b, इसलिए यदि कोई फलन, दो चरघातांकी फलनों के योग के रूप में है तो उन्हें अलग – अलग किसी चर में मान कर उसका अवकलज करें और फिर दोनों हलों को जोड़ दें।