Question 1:
Find the principal value of \(\sin^{-1}\left(-\frac{1}{2}\right) \)

Answer 1:
Let \(\sin^{-1}\left(-\frac{1}{2}\right) = y \), then \(\sin y = -\frac{1}{2} = -\sin \left(\frac{\pi}{6}\right) = \sin \left(-\frac{\pi}{6}\right) \)

We know that the range of the principal value branch of \(\sin^{-1} \) is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) and \(\sin \left(-\frac{\pi}{6}\right) = -\frac{1}{2} \)

Therefore, the principal value of \(\sin^{-1}\left(-\frac{1}{2}\right) \) is \(-\frac{\pi}{6} \).

Question 2:
Find the principal value of \(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \)

Answer 2:
Let \(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y \), then \(\cos y = \frac{\sqrt{3}}{2} = \cos \left(\frac{\pi}{6}\right) \)

We know that the range of the principal value branch of \(\cos^{-1} \) is \([0, \pi] \) and \(\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \)

Therefore, the principal value of \(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \) is \(\frac{\pi}{6} \).

Question 3:
Find the principal value of \(\csc^{-1}(2) \)

Answer 3:
Let \(\csc^{-1}(2) = y \), then \(\csc y = 2 = \csc \left(\frac{\pi}{6}\right) \)

We know that the range of the principal value branch of \(\csc^{-1} \) is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)-\(\{0\} \) and \(\csc \left(\frac{\pi}{6}\right) = 2 \).

Therefore, the principal value of \(\csc^{-1}(2) \) is \(\frac{\pi}{6} \).

Question 4:
Find the principal value of \(\tan^{-1}(-\sqrt{3}) \).

Answer 4:
Let \(\tan^{-1}(-\sqrt{3}) = y \), then \(\tan y = -\sqrt{3} = -\tan \left(\frac{\pi}{3}\right) = \tan \left(-\frac{\pi}{3}\right) \)

We know that the range of the principal value branch of \(\tan^{-1} \) is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) and \(\tan \left(-\frac{\pi}{3}\right) = -\sqrt{3} \)

Therefore, the principal value of \(\tan^{-1}(-\sqrt{3}) \) is \(-\frac{\pi}{3} \).
Question 5:
Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$.

Answer 5:
Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$, then $\cos y = -\frac{1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$
We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$ and $
\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$
Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6:
Find the principal value of $\tan^{-1}(-1)$.

Answer 6:
Let $\tan^{-1}(-1) = y$. Then, $\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$
We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$
Therefore, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7:
Find the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

Answer 7:
Let $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$, then $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$
We know that the range of the principal value branch of \sec^{-1} is $[0, \pi) - \left\{\frac{\pi}{2}\right\}$ and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$
Therefore, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8:
Find the principal value of $\cot^{-1}\sqrt{3}$.

Answer 8:
Let $\cot^{-1}\sqrt{3} = y$, then $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of \cot^{-1} is $(0, \pi)$ and $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$.
Therefore, the principal value of $\cot^{-1}\sqrt{3}$ is $\frac{\pi}{6}$.
Question 9:
Find the principal value of \(\cos^{-1}\left(-\frac{1}{\sqrt{2}} \right) \).

Answer 9:
Let \(\cos^{-1}\left(-\frac{1}{\sqrt{2}} \right) = y \), then \(\cos y = -\frac{1}{\sqrt{2}} = -\cos \left(\frac{\pi}{4} \right) = \cos \left(\pi - \frac{\pi}{4} \right) = \cos \left(\frac{3\pi}{4} \right) \).
We know that the range of the principal value branch of \(\cos^{-1} \) is \([0, \pi]\) and \(\cos \left(\frac{3\pi}{4} \right) = -\frac{1}{\sqrt{2}} \).
Therefore, the principal value of \(\cos^{-1}\left(-\frac{1}{\sqrt{2}} \right) \) is \(\frac{3\pi}{4} \).

Question 10:
Find the principal value of \(\csc^{-1}\left(-\sqrt{2} \right) \).

Answer 10:
Let \(\csc^{-1}\left(-\sqrt{2} \right) = y \), then \(\csc y = -\sqrt{2} = -\csc \left(\frac{\pi}{4} \right) = \csc \left(-\frac{\pi}{4} \right) \).
We know that the range of the principal value branch of \(\csc^{-1} \) is \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \) and \(\csc \left(-\frac{\pi}{4} \right) = -\sqrt{2} \).
Therefore, the principal value of \(\csc^{-1}\left(-\sqrt{2} \right) \) is \(-\frac{\pi}{4} \).

Question 11:
Find the value of \(\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2} \right) + \sin^{-1}\left(-\frac{1}{2} \right) \).

Answer 11:
Let \(\tan^{-1}(1) = x \), then \(\tan x = 1 = \tan \frac{\pi}{4} \).
We know that the range of the principal value branch of \(\tan^{-1} \) is \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \).
\[\therefore \tan^{-1}(1) = \frac{\pi}{4} \]
Let \(\cos^{-1}\left(-\frac{1}{2} \right) = y \), then
\[\cos y = -\frac{1}{2} = -\cos \frac{\pi}{3} = \cos \left(\pi - \frac{\pi}{3} \right) = \cos \left(\frac{2\pi}{3} \right) \]
We know that the range of the principal value branch of \(\cos^{-1} \) is \([0, \pi]\).
\[\therefore \cos^{-1}\left(-\frac{1}{2} \right) = \frac{2\pi}{3} \]
Let \(\sin^{-1}\left(-\frac{1}{2} \right) = z \), then
\[\sin z = -\frac{1}{2} = -\sin \frac{\pi}{6} = \sin \left(-\frac{\pi}{6} \right) \]
We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

$\therefore \sin^{-1} \left(-\frac{1}{2} \right) = -\frac{\pi}{6}$

Now,

$\tan^{-1}(1) + \cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$

$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$

$= \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$

Question 12:
Find the value of $\cos^{-1} \left(\frac{1}{2} \right) + 2\sin^{-1} \left(\frac{1}{2} \right)$

Answer 12:
Let $\cos^{-1} \left(\frac{1}{2} \right) = x$, then

$\cos x = \frac{1}{2} = \cos \frac{\pi}{3}$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$.

$\therefore \cos^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3}$

Let $\sin^{-1} \left(-\frac{1}{2} \right) = y$, then

$\sin y = \frac{1}{2} = \sin \frac{\pi}{6}$

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

$\therefore \sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{6}$

Now,

$\cos^{-1} \left(\frac{1}{2} \right) + 2\sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3} + 2 \times \frac{\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$.

Question 13:
If $\sin^{-1} x = y$, then

(A) $0 \leq y \leq \pi$

(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

(C) $0 < y < \pi$

(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer 13:
It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Hence, the option (B) is correct.
Question 14:
\(\tan^{-1}\sqrt{3} - \sec^{-1}(-2) \) is equal to
(A) \(\pi \)
(B) \(-\frac{\pi}{3} \)
(C) \(\frac{\pi}{3} \)
(D) \(\frac{2\pi}{3} \)

Answer 14:
Let \(\tan^{-1}\sqrt{3} = x \), then
\[
\tan x = \sqrt{3} = \tan \frac{\pi}{3}
\]
We know that the range of the principal value branch of \(\tan^{-1} \) is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \).
∴ \(\tan^{-1}\sqrt{3} = \frac{\pi}{3} \)

Let \(\sec^{-1}(-2) = y \), then
\[
\sec y = -2 = -\sec \frac{\pi}{3} = \sec \left(\pi - \frac{\pi}{3}\right) = \sec \left(\frac{2\pi}{3}\right)
\]
We know that the range of the principal value branch of \(\sec^{-1} \) is \([0, \pi] - \left\{ \frac{\pi}{2} \right\} \).
∴ \(\sec^{-1}(-2) = \frac{2\pi}{3} \)

Now,
\[
\tan^{-1}\sqrt{3} - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}
\]
Hence, the option (B) is correct.