Mathematics

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Exercise 5.1

Question 1:
Prove that the function \(f(x) = 5x - 3 \) is continuous at \(x = 0 \), at \(x = -3 \) and at \(x = 5 \).

Answer 1:
Given function \(f(x) = 5x - 3 \)
At \(x = 0 \), \(f(0) = 5(0) - 3 = -3 \)
LHL = \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (5x - 3) = -3 \)
RHL = \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (5x - 3) = -3 \)
Here, at \(x = 0 \), LHL = RHL = \(f(0) = -3 \)
Hence, the function \(f \) is continuous at \(x = 0 \).

At \(x = -3 \), \(f(-3) = 5(-3) - 3 = -18 \)
LHL = \(\lim_{x \to -3^-} f(x) = \lim_{x \to -3^-} (5x - 3) = -18 \)
RHL = \(\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (5x - 3) = -18 \)
Here, at \(x = -3 \), LHL = RHL = \(f(-3) = -18 \)
Hence, the function \(f \) is continuous at \(x = -3 \).

At \(x = 5 \), \(f(5) = 5(5) - 3 = 22 \)
LHL = \(\lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} (5x - 3) = 22 \)
RHL = \(\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} (5x - 3) = 22 \)
Here, at \(x = 5 \), LHL = RHL = \(f(5) = 22 \)
Hence, the function \(f \) is continuous at \(x = 5 \).

Question 2:
Examine the continuity of the function \(f(x) = 2x^2 - 1 \) at \(x = 3 \).

Answer 2:
Given function \(f(x) = 2x^2 - 1 \). At \(x = 3 \), \(f(3) = 2(3)^2 - 1 = 17 \)
LHL = \(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (2x^2 - 1) = 17 \)
RHL = \(\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (2x^2 - 1) = 17 \)
Here, at \(x = 3 \), LHL = RHL = \(f(3) = 17 \)
Hence, the function \(f \) is continuous at \(x = 3 \).

Question 3:
Examine the following functions for continuity:

(a) \(f(x) = x - 5 \)
(b) \(f(x) = \frac{1}{x-5}, x \neq 5 \)
(c) \(f(x) = \frac{x^2-25}{x+5}, x \neq -5 \)
(d) \(f(x) = |x - 5| \)

Answer 3:
(a) Given function \(f(x) = x - 5 \)
Let, \(k \) be any real number. At \(x = k \), \(f(k) = k - 5 \)
LHL = \(\lim_{x \to k^-} f(x) = \lim_{x \to k^-} (x - 5) = k - 5 \)
RHL = \(\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (x - 5) = k - 5 \)
At, \(x = k \), LHL = RHL = \(f(k) = k - 5 \)
Hence, the function \(f \) is continuous for all real numbers.
Mathematics
(www.tiwariacademy.com)
(Chapter - 5) (Continuity and Differentiability)
(Class 12)

(b) Given function \(f(x) = \frac{1}{x-5}, x \neq 5 \)

Let, \(k \ (k \neq 5) \) be any real number. At \(x = k, f(k) = \frac{1}{k-5} \)

\[
\text{LHL} = \lim_{x \to k^-} f(x) = \lim_{x \to k^-} \left(\frac{1}{x-5} \right) = \frac{1}{k-5}
\]

\[
\text{RHL} = \lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{1}{x-5} \right) = \frac{1}{k-5}
\]

At, \(x = k, \text{LHL} = \text{RHL} = f(k) = \frac{1}{k-5} \)

Hence, the function \(f \) is continuous for all real numbers (except 5).

(c) Given function \(f(x) = \frac{x^2-25}{x+5}, x \neq -5 \)

Let, \(k \ (k \neq -5) \) be any real number.

At \(x = k, f(k) = \frac{k^2-25}{k+5} = \frac{(k+5)(k-5)}{(k+5)} = (k + 5) \)

\[
\text{LHL} = \lim_{x \to k^-} f(x) = \lim_{x \to k^-} \left(\frac{x^2-25}{x+5} \right) = \lim_{x \to k^-} \left(\frac{(k+5)(k-5)}{(k+5)} \right) = k + 5
\]

\[
\text{RHL} = \lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{x^2-25}{x+5} \right) = \lim_{x \to k^+} \left(\frac{(k+5)(k-5)}{(k+5)} \right) = k + 5
\]

At, \(x = k, \text{LHL} = \text{RHL} = f(k) = k + 5 \)

Hence, the function \(f \) is continuous for all real numbers (except -5).

(d) Given function \(f(x) = |x - 5| \)

Let, \(k \) be any real number. According to question, \(k < 5 \) or \(k = 5 \) or \(k > 5 \).

First case: If, \(k < 5 \),

\(f(k) = 5 - k \) and \(\lim_{x \to k^-} f(x) = \lim_{x \to k^-} (5 - x) = 5 - k \)

Hence, the function \(f \) is continuous for all real numbers less than 5.

Second case: If, \(k = 5 \),

\(f(k) = 5 - 5 \) and \(\lim_{x \to k^-} f(x) = \lim_{x \to k^-} (x - 5) = 5 - k \)

Hence, the function \(f \) is continuous at \(x = 5 \).

Third case: If, \(k > 5 \),

\(f(k) = k - 5 \) and \(\lim_{x \to k^-} f(x) = \lim_{x \to k^-} (x - 5) = 5 - k \)

Hence, the function \(f \) is continuous for all real numbers greater than 5.

Hence, the function \(f \) is continuous for all real numbers.

Question 4:
Prove that the function \(f(x) = x^n \), is continuous at \(x = n \), where \(n \) is a positive integer.

Answer 4:
Given function \(f(x) = x^n \).

At \(x = n, f(n) = n^n \)

\[
\lim_{x \to n} f(x) = \lim_{x \to n} (x^n) = n^n
\]

Here, at \(x = n, \lim_{x \to n} f(x) = f(n) = n^n \)

Hence, the function \(f \) is continuous at \(x = n \), where \(n \) is a positive integer.

Question 5:
Is the function \(f(x) \) defined by \(f(x) = \begin{cases} x, & x \leq 1 \\ 5, & x > 1 \end{cases} \) continuous at \(x = 0 \)? At \(x = 1 \)? At \(x = 2 \)?
Answer 5:

Given function \(f(x) = \begin{cases} x, & x \leq 1 \\ 5, & x > 1 \end{cases} \)

At \(x = 0, f(0) = 0 \)

\[\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x = 0 \]

Here, \(x = 0, \lim_{x \to 0^-} f(x) = f(0) = 0 \)

Hence, the function \(f \) is discontinuous at \(x = 0 \).

At \(x = 1, f(1) = 1 \)

LHL = \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1 \)

RHL = \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 5 = 5 \)

Here, at \(x = 1 \), LHL \(\neq \) RHL. Hence, the function \(f \) is discontinuous at \(x = 1 \).

At \(x = 2, f(2) = 5 \)

\[\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} 5 = 5 \]

Here, at \(x = 2, \lim_{x \to 2^-} f(x) = f(2) = 5 \)

Hence, the function \(f \) is continuous at \(x = 2 \).

Question 6:

Find all points of discontinuity of \(f \), where \(f \) is defined by

\[f(x) = \begin{cases} 2x + 3, & \text{if } x \leq 2 \\ 2x - 3, & \text{if } x > 2 \end{cases} \]

Answer 6:

Let, \(k \) be any real number. According to question, \(k < 2 \) or \(k = 2 \) or \(k > 2 \)

First case: यदि, \(k < 2 \),

\[f(k) = 2k + 3 \text{ and } \lim_{x \to k^-} f(x) = \lim_{x \to k^-} (2x + 3) = 2k + 3 \]

Here, \(\lim_{x \to k^-} f(x) = f(k) \)

Hence, the function \(f \) is continuous for all real numbers smaller than 2.

Second case: If \(k = 2, f(2) = 2k + 3 \)

LHL = \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (2x + 3) = 7 \)

RHL = \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x - 3) = 1 \)

Here, at \(x = 2, \text{ LHL} \neq \text{ RHL} \). Hence, the function \(f \) is discontinuous at \(x = 2 \).

Third case: If \(k > 2 \),

\[f(k) = 2k - 3 \text{ and } \lim_{x \to k^-} f(x) = \lim_{x \to k^-} (2x - 3) = 2k - 3 \]

Here, \(\lim_{x \to k^-} f(x) = f(k) \)

Therefore, the function \(f \) is continuous for all real numbers greater than 2.

Hence, the function \(f \) is discontinuous only at \(x = 2 \).

Question 7:

\[f(x) = \begin{cases} |x| + 3, & \text{if } x \leq -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2, & \text{if } x \geq 3 \end{cases} \]

Answer 7:

Let, \(k \) be any real number. According to question,

\(k < -3 \) or \(k = -3 \) or \(-3 < k < 3 \) or \(k = 3 \) or \(k > 3 \)
First case: If \(k < -3 \),
\[
f(k) = -k + 3 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (-x + 3) = -k + 3. \text{ Here, } \lim_{x \to k} f(x) = f(k)
\]
Hence, the function \(f \) is continuous for all real numbers less than \(-3 \).

Second case: If \(k = -3 \), \(f(-3) = -(3) + 3 = 6 \)
\[
\lim_{x \to -3^-} f(x) = \lim_{x \to -3^-} (-x + 3) = -(3) + 3 = 6
\]
\[
\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (-2x) = -2(-3) = 6. \text{ Here, } \lim_{x \to -3} f(x) = f(k)
\]
Hence, the function \(f \) is continuous at \(x = -3 \).

Third case: If \(-3 < k < 3 \),
\[
f(k) = -2k \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (-2x) = -2k. \text{ Here, } \lim_{x \to k} f(x) = f(k)
\]
Hence, the function \(f \) is continuous at \(-3 < x < 3\).

Fourth case: If \(k = 3 \),
\[
LHL = \lim_{x \to k^-} f(x) = \lim_{x \to k^-} (-2x) = -2k
\]
\[
RHL = \lim_{x \to k^+} f(x) = \lim_{x \to k^+} (6x + 2) = 6k + 2,
\]
Here, at \(x = 3 \), LHL \(\neq \) RHL. Hence, the function \(f \) is discontinuous at \(x = 3 \).

Fifth case: If \(k > 3 \),
\[
f(k) = 6k + 2 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (6x + 2) = 6k + 2. \text{ Here, } \lim_{x \to k} f(x) = f(k)
\]
Hence, the function \(f \) is continuous for all numbers greater than \(3 \).
Hence, the function \(f \) is discontinuous only at \(x = 3 \).

Question 8:

\[
f(x) = \begin{cases}
 \frac{|x|}{x}, & \text{if } x \neq 0 \\
 0, & \text{if } x = 0
\end{cases}
\]

Answer 8:

After redefining the function \(f \), we get
\[
f(x) = \begin{cases}
 -\frac{x}{x}, & \text{if } x < 0 \\
 \frac{x}{x}, & \text{if } x = 0 \\
 \frac{x}{x}, & \text{if } x > 0
\end{cases}
\]
Let, \(k \) be any real number. According to question, \(k < 0 \) or \(k = 0 \) or \(k > 0 \).

First case: If \(k < 0 \),
\[
f(k) = -\frac{k}{k} = -1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} \left(-\frac{x}{x}\right) = -1. \text{ Here, } \lim_{x \to k} f(x) = f(k)
\]
Hence, the function \(f \) is continuous for all real numbers smaller than \(0 \).

Second case: If \(k = 0 \), \(f(0) = 0 \)
\[
LHL = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(-\frac{x}{x}\right) = -1 \quad \text{and} \quad RHL = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{x}{x}\right) = 1,
\]
Here, at \(x = 0 \), LHL \(\neq \) RHL. Hence, the function \(f \) is discontinuous at \(x = 0 \).

Third case: If \(k > 0 \),
\[
f(k) = \frac{k}{k} = 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{x}{x}\right) = 1. \text{ Here, } \lim_{x \to k} f(x) = f(k)
\]
Hence, the function \(f \) is continuous for all real numbers greater than \(0 \).
Therefore, the function \(f \) is discontinuous only at \(x = 0 \).

www.tiwariacademy.com
A Free web support in education
Mathematics
(www.tiwariacademy.com)
(Chapter - 5) (Continuity and Differentiability)
(Class 12)

Question 9:

\[f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \geq 0 \end{cases} \]

Answer 9:
Redefining the function, we get

\[f(x) = \begin{cases} \frac{x}{|x|} = \frac{x}{-x} = -1, & \text{if } x < 0 \\ -1, & \text{if } x \geq 0 \end{cases} \]

Here, \(\lim_{x \to k} f(x) = -1 \), where \(k \) is a real number.
Hence, the function \(f \) is continuous for all real numbers.

Question 10:

\[f(x) = \begin{cases} x + 1, & \text{if } x \geq 1 \\ x^2 + 1, & \text{if } x < 1 \end{cases} \]

Answer 10:
Let, \(k \) be any real number. According to question, \(k < 1 \) or \(k = 1 \) or \(k > 1 \)

First case: If, \(k < 1 \),
\[f(k) = k^2 + 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers smaller than 1.

Second case: If, \(k = 1 \), \(f(1) = 1 + 1 = 2 \)
LHL = \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2 + 1) = 1 + 1 = 2 \)
RHL = \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x + 1) = 1 + 1 = 2 \),
Here, at \(x = 1 \), LHL = RHL = \(f(1) \). Hence, the function \(f \) is continuous at \(x = 1 \).

Third case: If, \(k > 1 \),
\[f(k) = k + 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers greater than 1.
Therefore, the function \(f \) is continuous for all real numbers.

Question 11:

\[f(x) = \begin{cases} x^3 - 3, & \text{if } x \leq 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases} \]

Answer 11:
Let, \(k \) be any real number. According to question, \(k < 2 \) or \(k = 2 \) or \(k > 2 \)

First case: If, \(k < 2 \),
\[f(k) = k^3 - 3 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x^3 - 3) = k^3 - 3. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers less than 2.

Second case: If, \(k = 2 \), \(f(2) = 2^3 - 3 = 5 \)
LHL = \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^3 - 3) = 2^3 - 3 = 5 \)
RHL = \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + 1) = 2^2 + 1 = 5 \),
Here, at \(x = 2 \), LHL = RHL = \(f(2) \)
Hence, the function \(f \) is continuous at \(x = 2 \).
Mathematics
(www.tiwariacademy.com)
(Chapter – 5) (Continuity and Differentiability)
(Class 12)

Third case: If, \(k > 2 \),
\[f(k) = k^2 + 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for real numbers greater than 2.
Hence, the function \(f \) is continuous for all real numbers.

Question 12:

\[
\begin{cases}
 x^{10} - 1, & \text{if } x \leq 1 \\
 x^2, & \text{if } x > 1
\end{cases}
\]

Answer 12:
Let, \(k \) be any real number. According to question, \(k < 1 \) or \(k = 1 \) or \(k > 1 \)

First case: If, \(k < 1 \),
\[f(k) = k^{10} - 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x^{10} - 1) = k^{10} - 1. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers less than 1.

Second case: If, \(k = 1 \), \(f(1) = 1^{10} - 1 = 0 \)
LHL = \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^{10} - 1) = 0 \)
RHL = \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2) = 1, \)
Here, at \(x = 1 \), LHL \(\neq \) RHL. Hence, the function \(f \) is discontinuous at \(x = 1 \).

Third case: If, \(k > 1 \),
\[f(k) = k^2 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x^2) = k^2. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real values greater than 1.
Hence, the function \(f \) is discontinuous only at \(x = 1 \).

Question 13:

Is the function defined by \(f(x) = \begin{cases}
 x + 5, & \text{if } x \leq 1 \\
 x - 5, & \text{if } x > 1
\end{cases} \) a continuous function?

Answer 13:
Let, \(k \) be any real number. According to question, \(k < 1 \) or \(k = 1 \) or \(k > 1 \)

First case: If, \(k < 1 \),
\[f(k) = k + 5 \text{ and } \lim_{x \to k^-} f(x) = \lim_{x \to k^-} (x + 5) = k + 5. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers less than 1.

Second case: If, \(k = 1 \), \(f(1) = 1 + 5 = 6 \)
LHL = \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 5) = 6 \)
RHL = \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 5) = -4, \)
Here, at \(x = 1 \), LHL \(\neq \) RHL. Hence, the function \(f \) is discontinuous at \(x = 1 \).

Third case: If, \(k > 1 \),
\[f(k) = k - 5 \text{ and } \lim_{x \to k^-} f(x) = \lim_{x \to k^-} (x - 5) = k - 5. \]
Here, \(\lim_{x \to k} f(x) = f(k) \)
Hence, the function \(f \) is continuous for all real numbers greater than 1.
Hence, the function \(f \) is discontinuous only at \(x = 1 \).

Discuss the continuity of the function \(f \), where \(f \) is defined by:
Mathematics
(www.tiwariacademy.com)
(Chapter – 5) (Continuity and Differentiability)
(Class 12)

Question 14:

\[
f(x) = \begin{cases}
3, & \text{if } 0 \leq x \leq 1 \\
4, & \text{if } 1 < x < 3 \\
5, & \text{if } 3 \leq x \leq 10
\end{cases}
\]

Answer 14:

Let, \(k\) be any real number. According to question,
\(0 \leq k \leq 1\) or \(k = 1\) or \(1 < k < 3\) or \(k = 3\) or \(3 \leq k \leq 10\)

First case: If, \(0 \leq k \leq 1\),
\(f(k) = 3\) and \(\lim_{x \to k} f(x) = \lim_{x \to k} (3) = 3\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function \(f\) is continuous for \(0 \leq x \leq 1\).

Second case: If, \(k = 1\), \(f(1) = 3\)
LHL = \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (3) = 3\)
RHL = \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4) = 4\),
Here, at \(x = 1\), LHL \(\neq\) RHL. Hence, the function \(f\) is discontinuous at \(x = 1\).

Third case: If, \(1 < k < 3\),
\(f(k) = 4\) and \(\lim_{x \to k} f(x) = \lim_{x \to k} (4) = 4\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function \(f\) is continuous for \(1 < x < 3\).

Fourth case: If \(k = 3\),
LHL = \(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (4) = 4\) and \(\) RHL = \(\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (5) = 5\),
Here, at \(x = 3\), LHL \(\neq\) RHL. Hence, the function \(f\) is discontinuous at \(x = 3\).

Fifth case: If, \(3 \leq k \leq 10\),
\(f(k) = 5\) and \(\lim_{x \to k} f(x) = \lim_{x \to k} (5) = 5\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function \(f\) is continuous for \(3 \leq x \leq 10\).
Hence, the function \(f\) is discontinuous only at \(x = 1\) and \(x = 3\).

Question 15:

\[
f(x) = \begin{cases}
2x, & \text{if } x < 0 \\
0, & \text{if } 0 \leq x \leq 1 \\
4x, & \text{if } x > 1
\end{cases}
\]

Answer 15:

Let, \(k\) be any real number. According to question,
\(k < 0\) or \(k = 0\) or \(0 \leq k \leq 1\) or \(k = 1\) or \(k > 1\)

First case: If, \(k < 0\),
\(f(k) = 2k\) and \(\lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function \(f\) is continuous for all real numbers less than 0.

Second case: If, \(k = 0\), \(f(0) = 0\)
LHL = \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (2x) = 0\)
RHL = \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (0) = 0\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function \(f\) is continuous at \(x = 0\).

Third case: If, \(0 \leq k \leq 1\),
\(f(k) = 0\) and \(\lim_{x \to k} f(x) = \lim_{x \to k} (0) = 0\). Here, \(\lim_{x \to k} f(x) = f(k)\)
Hence, the function f is continuous at $0 \leq x \leq 1$.

Fourth case: If $k = 1$,
\[
\text{LHL } = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2x) = 2
\]
\[
\text{RHL } = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x) = 2
\]
Here, at $x = 1$, LHL \neq RHL.
Hence, the function f is discontinuous at $x = 1$.

Fifth case: If $k > 1$,
\[
f(k) = 2k \quad \text{and} \quad \lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k
\]
Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 1. Therefore, the function f is discontinuous only at $x = 1$.

Question 16:
\[
f(x) = \begin{cases}
-2, & \text{if } x \leq -1 \\
2x, & \text{if } -1 < x \leq 1 \\
2, & \text{if } x > 1
\end{cases}
\]

Answer 16:
Let, k be any real number.
According to question, $k < -1$ or $k = -1$ or $-1 < x \leq 1$ or $k = 1$ or $k > 1$

First case: If, $k < -1$,
\[
f(k) = -2 \quad \text{and} \quad \lim_{x \to k} f(x) = \lim_{x \to k} (-2) = -2
\]
Here, $\lim_{x \to k} f(x) = f(k)$
Hence, the function f is continuous for all real numbers less than -1.

Second case: If, $k = -1$,
\[
f(-1) = -2 \quad \text{and} \quad \lim_{x \to -1} f(x) = \lim_{x \to -1} (-2) = -2
\]
Here, $\lim_{x \to -1} f(x) = f(k)$
Hence, the function f is continuous at $x = -1$.

Third case: If, $-1 < x \leq 1$,
\[
f(k) = 2k \quad \text{and} \quad \lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k
\]
Here, $\lim_{x \to k} f(x) = f(k)$
Hence, the function f is continuous at $-1 < x \leq 1$.

Fourth case: If, $k = 1$,
\[
\text{LHL } = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2x) = 2
\]
\[
\text{RHL } = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x) = 2
\]
Here, $\lim_{x \to 1^-} f(x) = f(k)$
Hence, the function f is continuous at $x = 1$.

Fifth case: If, $k > 1$,
\[
f(k) = 2 \quad \text{and} \quad \lim_{x \to k} f(x) = \lim_{x \to k} (2) = 2
\]
Here, $\lim_{x \to k} f(x) = f(k)$
Hence, the function f is continuous for all real numbers greater than 1. Therefore, the function f is continuous for all real numbers.
Question 17:
Find the relationship between \(a\) and \(b\) so that the function \(f\) defined by
\[
f(x) = \begin{cases}
ax + 1, & \text{if } x \leq 3 \\
bx + 3, & \text{if } x > 3
\end{cases}
\]
is continuous at \(x = 3\).

Answer 17:
Given that the function is continuous at \(x = 3\). Therefore, \(LHL = RHL = f(3)\)
\[
\Rightarrow \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3)
\]
\[
\Rightarrow \lim_{x \to 3^-} ax + 1 = \lim_{x \to 3^+} bx + 3 = 3a + 1
\]
\[
\Rightarrow 3a + 1 = 3b + 3 = 3a + 1
\]
\[
\Rightarrow 3a = 3b + 2 \quad \Rightarrow a = b + \frac{2}{3}
\]

Question 18:
For what value of \(\lambda\) is the function defined by
\[
f(x) = \begin{cases}
\lambda(x^2 - 2x), & \text{if } x \leq 0 \\
4x + 1, & \text{if } x > 0
\end{cases}
\]
continuous at \(x = 0\)? What about continuity at \(x = 1\)?

Answer 18:
Given that the function is continuous at \(x = 0\). Therefore, \(LHL = RHL = f(0)\)
\[
\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)
\]
\[
\Rightarrow \lim_{x \to 0^-} \lambda(x^2 - 2x) = \lim_{x \to 0^+} 4x + 1 = \lambda[(0)^2 - 2(0)]
\]
\[
\Rightarrow \lambda[(0)^2 - 2(0)] = 4(0) + 1 = \lambda(0)
\]
\[
\Rightarrow 0 = \lambda + 1 \quad \Rightarrow \lambda = \frac{1}{0}
\]
Hence, there is no real value of \(\lambda\) for which the given function be continuous.
If, \(x = 1\),
\[
f(1) = 4(1) + 1 = 5
\]
and \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) = 5\), Here, \(\lim f(x) = f(1)\)
Hence, the function \(f\) is continuous for all real values of \(\lambda\).

Question 19:
Show that the function defined by \(g(x) = x - [x]\) is discontinuous at all integral points. Here \([x]\) denotes the greatest integer less than or equal to \(x\).

Answer 19:
Let, \(k\) be any integer.
\(LHL = \lim_{x \to k^-} f(x) = \lim_{x \to k^-} x - [x] = k - (k - 1) = 1\)
\(RHL = \lim_{x \to k^+} f(x) = \lim_{x \to k^+} x - [x] = k - (k) = 0\),
Hence, at \(x = k\), \(LHL \neq RHL\). Hence, the function \(f\) is discontinuous for all integers.

Question 20:
Is the function defined by \(f(x) = x^2 - \sin x + 5\) continuous at \(x = \pi\).

Answer 20:
Given function: \(f(x) = x^2 - \sin x + 5\),
At \(x = \pi\), \(f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5\)

www.tiwariacademy.com
A Free web support in education
Mathematics
(www.tiwariacademy.com)
(Chapter - 5) (Continuity and Differentiability)
(Class 12)

\[
l\lim_{x \to n} f(x) = \lim_{x \to n} x^2 - \sin x + 5 = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5
\]

Here, at \(x = \pi \), \(\lim_{x \to \pi} f(x) = f(\pi) = \pi^2 + 5 \)

Hence, the function \(f \) is continuous at \(x = \pi \).

Question 21:
Discuss the continuity of the following functions:

(a) \(f(x) = \sin x + \cos x \)
(b) \(f(x) = \sin x - \cos x \)
(c) \(f(x) = \sin x \cdot \cos x \)

Answer 21:
Let, \(g(x) = \sin x \)
Let, \(k \) be any real number. At \(x = k \), \(g(k) = \sin k \)
LHL = \(\lim_{x \to k^-} g(x) = \lim_{x \to k^-} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k \)
RHL = \(\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k + h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k \)
Here, at \(x = k \), LHL = RHL = \(g(k) \).
Hence, the function \(g \) is continuous for all real numbers.

Let, \(h(x) = \cos x \)
Let, \(k \) be any real number. \(x = k \) पार, \(h(k) = \cos k \)
LHL = \(\lim_{x \to k^-} h(x) = \lim_{x \to k^-} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k \)
RHL = \(\lim_{x \to k^+} h(x) = \lim_{x \to k^+} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k \)
Here, at \(x = k \), LHL = RHL = \(h(k) \).
Hence, the function \(h \) is continuous for all real numbers.

We know that if \(g \) and \(h \) are two continuous functions, then the functions \(g + h, g - h \) and \(gh \) also be a continuous functions.
Hence, (a) \(f(x) = \sin x + \cos x \) (b) \(f(x) = \sin x - \cos x \) and (c) \(f(x) = \sin x \cdot \cos x \) are continuous functions.

Question 22:
Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Answer 22:
Let \(g(x) = \sin x \)
Let, \(k \) be any real number. At \(x = k \), \(g(k) = \sin k \)
LHL = \(\lim_{x \to k^-} g(x) = \lim_{x \to k^-} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k \)
RHL = \(\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k + h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k \)
Here, at \(x = k \), LHL = RHL = \(g(k) \).
Hence, the function \(g \) is continuous for all real numbers.

Let \(h(x) = \cos x \)
Let, \(k \) be any real number. At \(x = k \), \(h(k) = \cos k \)
LHL = \(\lim_{x \to k^-} h(x) = \lim_{x \to k^-} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k \)
RHL = \(\lim_{x \to k^+} h(x) = \lim_{x \to k^+} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k \)
Here, at \(x = k \), LHL = RHL = \(h(k) \).
Hence, the function \(h \) is continuous for all real numbers.

We know that if \(g \) and \(h \) are two continuous functions, then the functions \(g, h \neq 0 \), \(\frac{1}{h} \), \(h \neq 0 \) and \(\frac{1}{g}, g \neq 0 \) be continuous functions.
Therefore, \(\csc x = \frac{1}{\sin x} \), \(\sin x \neq 0 \) is continuous \(\Rightarrow x \neq n\pi \ (n \in \mathbb{Z}) \) is continuous.
Hence, \(\csc x \) is continuous except \(x = n\pi \ (n \in \mathbb{Z}) \).

\[\sec x = \frac{1}{\cos x}, \cos x \neq 0 \text{ is continuous.} \Rightarrow x \neq \frac{(2n+1)\pi}{2} \ (n \in \mathbb{Z}) \text{ is continuous.} \]
Hence, \(\sec x \) is continuous except \(x = \frac{(2n+1)\pi}{2} \ (n \in \mathbb{Z}) \).

\[\cot x = \frac{\cos x}{\sin x}, \sin x \neq 0 \text{ is continuous.} \Rightarrow x \neq n\pi \ (n \in \mathbb{Z}) \text{ is continuous.} \]
Hence, \(\cot x \) is continuous except \(x = n\pi \ (n \in \mathbb{Z}) \).

Question 23:
Find all points of discontinuity of \(f \), where
\[
f(x) = \begin{cases}
\frac{\sin x}{x}, & \text{if } x < 0 \\
x + 1, & \text{if } x \geq 0
\end{cases}
\]

Answer 23:
Let, \(k \) be any real number. According to question, \(k < 0 \) or \(k = 0 \) or \(k > 0 \)
- **First case:** If, \(k < 0 \),
 \[f(k) = \frac{\sin k}{k} \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{\sin x}{x} \right) = \frac{\sin k}{k}. \] Here, \(\lim f(x) = f(k) \)
 Hence, the function \(f \) is continuous for all real numbers less than 0.
- **Second case:** If, \(k = 0 \), \(f(0) = 0 + 1 = 1 \)
 \[LHL = \lim_{x \to 0^-} f(x) = \lim_{x \to 0} (x + 1) = 0 + 1 = 1 \]
 \[RHL = \lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x + 1) = 0 + 1 = 1, \] Here, at \(x = 0 \), \(LHL = RHL = f(0) \). Hence, the function \(f \) is continuous at \(x = 0 \).
- **Third case:** If, \(k > 0 \),
 \[f(k) = k + 1 \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1, \] Here, \(\lim f(x) = f(k) \)
 Hence, the function \(f \) is continuous for all real numbers greater than 0.
 Therefore, the function \(f \) is continuous for all real numbers.

Question 24:
Determine if \(f \) defined by
\[
f(x) = \begin{cases}
x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\
0, & \text{if } x = 0
\end{cases}
\]
is a continuous function?

Answer 24:
Let, \(k \) be any real number. According to question, \(k \neq 0 \) or \(k = 0 \)
- **First case:** If, \(k \neq 0 \),
 \[f(k) = k^2 \sin \frac{1}{k} \text{ and } \lim_{x \to k} f(x) = \lim_{x \to k} \left(x^2 \sin \frac{1}{x} \right) = k^2 \sin \frac{1}{k}. \] Here, \(\lim f(x) = f(k) \)
 Hence, the function \(f \) is continuous for \(k \neq 0 \).
- **Second case:** If, \(k = 0 \), \(f(0) = 0 \)
 \[LHL = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(x^2 \sin \frac{1}{x} \right) \]
 \[RHL = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) \]
Mathematics
(www.tiwariacademy.com)
(Chapter – 5) (Continuity and Differentiability)
(Class 12)

We know that, $-1 \leq \sin \frac{1}{x} \leq 1$, $x \neq 0 \quad \Rightarrow -x^2 \leq \sin \frac{1}{x} \leq x^2$

$\Rightarrow \lim_{x \to 0}(-x^2) \leq \lim_{x \to 0} \frac{1}{x} \leq \lim_{x \to 0} x^2$

$\Rightarrow 0 \leq \lim_{x \to 0} \sin \frac{1}{x} \leq 0 \quad \Rightarrow \lim_{x \to 0} \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0} f(x) = 0$

Similarly, RHL = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x}\right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{x}\right) = 0$,

Here, at $x = 0$, LHL = RHL = $f(0)$

Hence, at $x = 0$, f is continuous.

Hence, the function f is continuous for all real numbers.

Question 25:

Examine the continuity of f, where f is defined by

$$f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ -1, & \text{if } x = 0 \end{cases}$$

Answer 25:

Let, k be any real number. According to question, $k \neq 0$ or $k = 0$

First case: If, $k \neq 0$, $f(0) = 0 - 1 = -1$

LHL = $\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} (\sin x - \cos x) = 0 - 1 = -1$

RHL = $\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} (\sin x - \cos x) = 0 - 1 = -1$

Hence, at $x \neq 0$, LHL = RHL = $f(x)$

Hence, the function f is continuous at $x \neq 0$.

Second case: If, $k = 0$, $f(k) = -1$

and $\lim_{x \to k} f(x) = \lim_{x \to k} (-1) = -1$, Here, $\lim f(x) = f(k)$

Hence, the function f is continuous at $x = 0$.

Therefore, the function f is continuous for all real numbers.

Find the values of k so that the function f is continuous at the indicated point in exercises 26 to 29.

Question 26:

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases} \quad \text{at } x = \frac{\pi}{2}$$

Answer 26:

Given that the function is continuous at $x = \frac{\pi}{2}$. Therefore, LHL = RHL = $f\left(\frac{\pi}{2}\right)$

$\Rightarrow \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$

$\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = 3$

$\Rightarrow \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} - h\right)}{\pi - 2 \left(\frac{\pi}{2} - h\right)} = \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} + h\right)}{\pi - 2 \left(\frac{\pi}{2} + h\right)} = 3$
Mathematics
(www.tiwariacademy.com)
(Chapter – 5) (Continuity and Differentiability)
(Class 12)

\[\lim_{h \to 0} \frac{k \sin h}{2h} = \lim_{h \to 0} \frac{-k \sin h}{-2h} = 3 \]
\[\frac{k}{2} \cdot \frac{k}{2} = 3 \]
\[k = 6 \]

Question 27:

\[f(x) = \begin{cases}
 kx^2, & \text{if } x \leq 2 \\
 3, & \text{if } x > 2
\end{cases} \text{ at } x = 2 \]

Answer 27:

Given that the function is continuous at \(x = 2 \).
Therefore, LHL = RHL = \(f(2) \)
\[\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \]
\[\lim_{x \to 2^-} kx^2 = \lim_{x \to 2^+} 3 = k(2)^2 \]
\[4k = 3 = 4k \]
\[k = \frac{3}{4} \]

Question 28:

\[f(x) = \begin{cases}
 kx + 1, & \text{if } x \leq \pi \\
 \cos x, & \text{if } x > \pi
\end{cases} \text{ at } x = \pi \]

Answer 28:

Given that the function is continuous at \(x = \pi \).
Therefore, LHL = RHL = \(f(\pi) \)
\[\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x) = f(\pi) \]
\[\lim_{x \to \pi^-} kx + 1 = \lim_{x \to \pi^+} \cos x = k(\pi) + 1 \]
\[k(\pi) + 1 = \cos \pi = k\pi + 1 \]
\[k\pi + 1 = -1 = k\pi + 1 \]
\[\pi k = -2 \]
\[k = -\frac{2}{\pi} \]

Question 29:

\[f(x) = \begin{cases}
 kx + 1, & \text{if } x \leq 5 \\
 3x - 5, & \text{if } x > 5
\end{cases} \text{ at } x = 5 \]

Answer 29:

Given that the function is continuous at \(x = 5 \).
Therefore, LHL = RHL = \(f(5) \)
\[\lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x) = f(5) \]
\[\lim_{x \to 5^-} kx + 1 = \lim_{x \to 5^+} 3x - 5 = 5k + 1 \]
\[5k + 1 = 15 - 5 = 5k + 1 \]
\[5k = 9 \]
\[k = \frac{9}{5} \]
Question 30:
Find the values of \(a \) and \(b \) such that the function defined by
\[
f(x) = \begin{cases}
5, & \text{if } x \leq 2 \\
ax + b, & \text{if } 2 < x < 10 \\
21, & \text{if } x \geq 10
\end{cases}
\]
is a continuous function.

Answer 30:
Given that the function is continuous at \(x = 2 \). Therefore, \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \)
\[
\Rightarrow \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = 5
\]
\[
\Rightarrow 2a + b = 5 \quad \text{(1)}
\]
Given that the function is continuous at \(x = 10 \). Therefore, \(\lim_{x \to 10^-} f(x) = \lim_{x \to 10^+} f(x) = f(10) \)
\[
\Rightarrow \lim_{x \to 10^-} f(x) = \lim_{x \to 10^+} f(x) = 21
\]
\[
\Rightarrow 10a + b = 21 \quad \text{(2)}
\]
Solving the equation (1) and (2), we get
\[
a = 2 \quad b = 1
\]

Question 31:
Show that the function defined by \(f(x) = \cos(x^2) \) is a continuous function.

Answer 31:
Assuming that the functions are well defined for all real numbers, we can write the given function \(f \) in the combination of \(g \) and \(h \) \((f = gh)\). Where, \(g(x) = \cos x \) and \(h(x) = x^2 \). If \(g \) and \(h \) both are continuous function then \(f \) also be continuous.
\[
(\because \text{goh}(x) = g(h(x)) = g(x^2) = \cos(x^2))
\]
Function \(g(x) = \cos x \)
Let, \(k \) be any real number. At \(x = k \), \(g(k) = \cos k \)
\[
\lim_{x \to k} g(x) = \lim_{x \to k} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k
\]
Here, \(\lim_{x \to k} g(x) = g(k) \). Hence, the function \(g \) is continuous for all real numbers.

Function \(h(x) = x^2 \)
Let, \(k \) be any real number. At \(x = k \), \(h(k) = k^2 \)
\[
\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2
\]
Here, \(\lim_{x \to k} h(x) = h(k) \). Hence, the function \(h \) is continuous for all real numbers.
Therefore, \(g \) and \(h \) both are continuous function. Hence, \(f \) is continuous.

Question 32:
Show that the function defined by \(f(x) = |\cos x| \) is a continuous function.

Answer 32:
Assuming that the functions are well defined for all real numbers, we can write the given function \(f \) in the combination of \(g \) and \(h \) \((f = gh)\). Where, \(g(x) = |x| \) and \(h(x) = \cos x \). If \(g \) and \(h \) both are continuous function then \(f \) also be continuous.
\[
(\because \text{goh}(x) = g(h(x)) = g(\cos x) = |\cos x|)
\]
Function \(g(x) = |x| \)
Mathematics

(www.tiwariacademy.com)

(Chapter - 5) (Continuity and Differentiability)

(Class 12)

Rearranging the function \(g \), we get
\[
g(x) = \begin{cases}
-x, & \text{if } x < 0 \\
(x, & \text{if } x \geq 0
\end{cases}
\]

Let, \(k \) be any real number. According to question, \(k < 0 \) or \(k = 0 \) or \(k > 0 \)

First case: If, \(k < 0 \),
\[
g(k) = 0 \quad \text{and} \quad \lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0, \quad \text{here, } \lim_{x \to k} g(x) = g(k)
\]
Hence, the function \(g \) is continuous for all real numbers less than 0.

Second case: If, \(k = 0 \), \(g(0) = 0 + 1 = 1 \)
\[
\text{LHL} = \lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} (-x) = 0 \\
\text{RHL} = \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0,
\]
Here, at \(x = 0 \), LHL = RHL = \(g(0) \)
Hence, the function \(g \) is continuous at \(x = 0 \).

Third case: If, \(k > 0 \),
\[
g(k) = 0 \quad \text{and} \quad \lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0, \quad \text{Here, } \lim_{x \to k} g(x) = g(k)
\]
Hence, the function \(g \) is continuous for all real numbers greater than 0.
Hence, the function \(g \) is continuous for all real numbers.

Function \(h(x) = \cos x \)
Let, \(k \) be any real number. At \(x = k \), \(h(k) = \cos k \)
\[
\lim_{x \to k} h(x) = \lim_{x \to k} \cos x = \cos k
\]
Here, \(\lim_{x \to k} h(x) = h(k) \), Hence, the function \(h \) is continuous for all real numbers.
Therefore, \(g \) and \(h \) both are continuous function. Hence, \(f \) is continuous.

Question 33:
Examine that \(\sin |x| \) is a continuous function.

Answer 33:
Assuming that the functions are well defined for all real numbers, we can write the given function \(f \) in the combination of \(g \) and \(h \) (\(f = h \circ g \)). Where, \(h(x) = \sin x \) and \(g(x) = |x| \). If \(g \) and \(h \) both are continuous function then \(f \) also be continuous.
\[
[:: h \circ g(x) = h(g(x)) = h(|x|) = \sin |x|]
\]
Function \(h(x) = \sin x \)
Let, \(k \) be any real number. At \(x = k \), \(h(k) = \sin k \)
\[
\lim_{x \to k} h(x) = \lim_{x \to k} \sin x = \sin k
\]
Here, \(\lim_{x \to k} h(x) = h(k) \), Hence, the function \(h \) is continuous for all real numbers.
Function \(g(x) = |x| \)
Redefining the function \(g \), we get
\[
g(x) = \begin{cases}
-x, & \text{if } x < 0 \\
(x, & \text{if } x \geq 0
\end{cases}
\]
Let, \(k \) be any real number. According to question, \(k < 0 \) or \(k = 0 \) or \(k > 0 \)

First case: If, \(k < 0 \),
\[
g(k) = 0 \quad \text{and} \quad \lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0, \quad \text{Here, } \lim_{x \to k} g(x) = g(k)
\]
Hence, the function \(g \) is continuous for all real numbers less than 0.
Second case: If, \(k = 0 \), \(g(0) = 0 + 1 = 1 \)
LHL = \(\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} (-x) = 0 \)
RHL = \(\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0 \)
Here, at \(x = 0 \), LHL = RHL = \(g(0) \)
Hence, at \(x = 0 \), the function \(g \) is continuous.

Third case: If, \(k > 0 \),
\(g(k) = 0 \) and \(\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0 \), Here, \(\lim g(x) = g(k) \)
Hence, the function \(g \) is continuous for all real numbers greater than 0.
Hence, the function \(g \) is continuous for all real numbers.
Therefore, \(g \) and \(h \) both are continuous function. Hence, \(f \) is continuous.

Question 34:
Find all the points of discontinuity of \(f \) defined by \(f(x) = |x| - |x + 1| \).

Answer 34:
Assuming that the functions are well defined for all real numbers, we can write the given function \(f \) in the combination of \(g \) and \(h \) (\(f = g - h \)), where, \(g(x) = |x| \) and \(h(x) = |x + 1| \). If \(g \) and \(h \) both are continuous function then \(f \) also be continuous.
Function \(g(x) = |x| \)
Redefining the function \(g \), we get,
\[
g(x) = \begin{cases}
-x, & \text{if } x < 0 \\
x, & \text{if } x \geq 0
\end{cases}
\]
Let, \(k \) be any real number. According to question, \(k < 0 \) or \(k = 0 \) or \(k > 0 \)

First case: If, \(k < 0 \),
\(g(k) = 0 \) and \(\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0 \), Here, \(\lim g(x) = g(k) \)
Hence, the function \(g \) is continuous for all real numbers less than 0.

Second case: If, \(k = 0 \), \(g(0) = 0 + 1 = 1 \)
LHL = \(\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} (-x) = 0 \) and \(\text{RHL} = \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0 \)
Here, at \(x = 0 \), LHL = RHL = \(g(0) \)
Hence, the function \(g \) is continuous at \(x = 0 \).

Third case: If, \(k > 0 \),
\(g(k) = 0 \) and \(\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0 \), Here, \(\lim g(x) = g(k) \)
Hence, the function \(g \) is continuous for all real numbers more than 0.
Hence, the function \(g \) is continuous for all real numbers.

Function \(h(x) = |x + 1| \)
Redefining the function \(h \), we get
\[
h(x) = \begin{cases}
-(x + 1), & \text{if } x < -1 \\
x + 1, & \text{if } x \geq -1
\end{cases}
\]
Let, \(k \) be any real number. According to question, \(k < -1 \) or \(k = -1 \) or \(k > -1 \)

First case: If, \(k < -1 \),
\(h(k) = -(k + 1) \) and \(\lim_{x \to k} h(x) = \lim_{x \to k} (-k + 1) = -(k + 1) \), Here, \(\lim h(x) = h(k) \)
Hence, the function \(g \) is continuous for all real numbers less than \(-1\).

Second case: If, \(k = -1 \), \(h(-1) = -1 + 1 = 0 \)
Mathematics
(www.tiwariacademy.com)
(Chapter - 5) (Continuity and Differentiability)
(Class 12)

LHL = \lim_{x \to -1^-} h(x) = \lim_{x \to -1^-} (-1 + 1) = 0

RHL = \lim_{x \to -1^+} h(x) = \lim_{x \to -1^+} (x + 1) = -1 + 1 = 0,

Here, at \(x = -1 \), LHL = RHL = \(h(-1) \)
Hence, the function \(h \) is continuous at \(x = -1 \).

Third case: If, \(k > -1 \),
\(h(k) = k + 1 \) and \(\lim_{x \to k} h(x) = \lim_{x \to k} (k + 1) = k + 1 \), Here, \(\lim h(x) = h(k) \)

Hence, the function \(g \) is continuous for all real numbers greater than \(-1\).
Hence, the function \(h \) is continuous for all real numbers.

Therefore, \(g \) and \(h \) both are continuous function. Hence, \(f \) is continuous.