Question 1:
Give the geometric representations of \(y = 3 \) as an equation
(i) in one variable
(ii) in two variables

Answer 1:
(i) Equation \(y = 3 \) can be represented in one variable on number line.

(ii) For two variables representation of \(y = 3 \), we will use Cartesian plane. Now the equation:
\[
0 \cdot x + y = 3 \\
\Rightarrow y = 3 - 0.\ x
\]
Putting \(x = 1 \), we have, \(y = 3 - 0.1 = 3 \)
Putting \(x = 2 \), we have, \(y = 3 - 0.2 = 3 \)
Hence, A(1, 3) and B(2, 3) are the two solutions of the given equation.

Question 2:
Give the geometric representations of \(2x + 9 = 0 \) as an equation
(i) in one variable
(ii) in two variables

Answer 2:
(i) To represent the equation \(2x + 9 = 0 \) in one variable, we will use number line.
\[
2x + 9 = 0 \\
\Rightarrow x = -\frac{9}{2}
\]

(ii) To represent the equation \(2x + 9 = 0 \) in two variable, we will use Cartesian plane. Now the equation:
\[
2x + 0.\ y = -9
\]
\[
\Rightarrow x = \frac{-9 - 0.\ y}{2}
\]
Putting \(y = 1 \), we have, \(x = \frac{-9 - 0\times1}{2} = -\frac{9}{2} \)
Putting \(y = 2 \), we have, \(x = \frac{-9 - 0\times2}{2} = -\frac{9}{2} \)
Hence, A\(\left(-\frac{9}{2}, 1\right) \) and B\(\left(-\frac{9}{2}, 2\right) \) are the two solutions of the given equation.