Mathematics
(www.tiwariacademy.com)
(Chapter - 14) (Practical Geometry)
(Class - VI)

Exercise 14.4

Question 1:
Draw any line segment \overline{AB}. Mark any point M on it. Through M, draw a perpendicular to \overline{AB}. (Use ruler and compasses)

Answer 1:
Steps of construction:
(i) With M as centre and a convenient radius, draw an arc intersecting the line AB at two points C and B.
(ii) With C and D as centres and a radius greater than MC, draw two arcs, which cut each other at P.
(iii) Join PM. Then PM is perpendicular to AB through the point M.

Question 2:
Draw any line segment \overline{PQ}. Take any point R not on it. Through R, draw a perpendicular to \overline{PQ}. (Use ruler and set-square)

Answer 2:
Steps of construction:
(i) Place a set-square on \overline{PQ} such that one arm of its right angle aligns along \overline{PQ}.
(ii) Place a ruler along the edge opposite to the right angle of the set-square.
(iii) Hold the ruler fixed. Slide the set square along the ruler till the point R touches the other arm of the set square.
(iv) Join RM along the edge through R meeting \overline{PQ} at M. Then $RM \perp \overline{PQ}$.

Question 3:
Draw a line l and a point X on it. Through X, draw a line segment \overline{XY} perpendicular to l. Now draw a perpendicular to \overline{XY} to Y. (use ruler and compasses)

Answer 3:
Steps of construction:
(i) Draw a line $'l'$ and take point X on it.
(ii) With X as centre and a convenient radius, draw an arc intersecting the line $'l'$ at two points A and B.
(iii) With A and B as centres and a radius greater than XA, draw two arcs, which cut each other at C.
(iv) Join AC and produce it to Y. Then XY is perpendicular to $'l'$.
(v) With D as centre and a convenient radius, draw an arc intersecting XY at two points C and D.
(vi) With C and D as centres and radius greater than YD, draw two arcs which cut each other at F.
(vii) Join YF, then YF is perpendicular to XY at Y.

www.tiwariacademy.com
A Free web support in Education