Question 1:
Prove that $\sqrt{5}$ is irrational.

Answer 1:
Let $\sqrt{5}$ be a rational number.
Therefore, we can find two integers a, b ($b \neq 0$) such that $\sqrt{5} = \frac{a}{b}$. Let a and b have a common factor other than 1. Then we can divide them by the common factor, and assume that a and b are co-prime.

\[a = \sqrt{5}b \]
\[\Rightarrow a^2 = 5b^2 \]

Therefore, a^2 is divisible by 5 and it can be said that a is divisible by 5.
Let $a = 5k$, where k is an integer

\[(5k)^2 = 5b^2 \]
\[\Rightarrow 5k^2 = b^2 \]

This means that b^2 is divisible by 5 and hence, b is divisible by 5. This implies that a and b have 5 as a common factor. And this is a contradiction to the fact that a and b are co-prime. Hence, $\sqrt{5}$ cannot be expressed as $\frac{p}{q}$ or it can be said that $\sqrt{5}$ is irrational.

Question 2:
Prove that $3 + 2\sqrt{5}$ is irrational.

Answer 2:
Let $3 + 2\sqrt{5}$ be rational.
Therefore, we can find two co-prime integers a, b ($b \neq 0$) such that

\[3 + 2\sqrt{5} = \frac{a}{b} \]
\[\Rightarrow 2\sqrt{5} = \frac{a}{b} - 3 \]
\[\Rightarrow \sqrt{5} = \frac{1}{2} \left(\frac{a}{b} - 3 \right) \]

Since a and b are integers, $\frac{1}{2} \left(\frac{a}{b} - 3 \right)$ will also be rational and therefore, $\sqrt{5}$ is rational. This contradicts the fact that $\sqrt{5}$ is irrational. Hence, our assumption that $3 + 2\sqrt{5}$ is rational is false. Therefore, $3 + 2\sqrt{5}$ is irrational.

Question 3:
Prove that the following are irrationals:

(i) $\frac{1}{\sqrt{2}}$
(ii) $7\sqrt{5}$
(iii) $6 + \sqrt{2}$

Answer 3:

(i) $\frac{1}{\sqrt{2}}$
Let $\frac{1}{\sqrt{2}}$ be rational.
Therefore, we can find two co-prime integers a, b ($b \neq 0$) such that

\[\frac{1}{\sqrt{2}} = \frac{a}{b} \]

Or
\[\frac{b}{a} \] is rational as \(a \) and \(b \) are integers.
Therefore, \(\sqrt{2} \) is rational which contradicts the fact that \(\sqrt{2} \) is irrational.
Hence, our assumption is false and \(\frac{1}{\sqrt{2}} \) is irrational.

\textbf{(ii) 7} \sqrt{5} \\
Let \(7 \sqrt{5} \) is rational.
Therefore, we can find two co-prime integers \(a, b \) (\(b \neq 0 \)) such that
\[7 \sqrt{5} = \frac{a}{b} \]
\[\Rightarrow \sqrt{5} = \frac{a}{7b} \]

\(\frac{a}{7b} \) is rational as \(a \) and \(b \) are integers.
Therefore, \(\sqrt{5} \) should be rational.
This contradicts the fact that \(\sqrt{5} \) is irrational. Therefore, our assumption that \(7 \sqrt{5} \) is rational is false. Hence, \(7 \sqrt{5} \) is irrational.

\textbf{(iii) 6} + \sqrt{2} \\
Let \(6 + \sqrt{2} \) be rational.
Therefore, we can find two co-prime integers \(a, b \) (\(b \neq 0 \)) such that
\[6 + \sqrt{2} = \frac{a}{b} \]
\[\Rightarrow \sqrt{2} = \frac{a}{b} - 6 \]
Since \(a \) and \(b \) are integers, \(\frac{a}{b} - 6 \) is also rational and hence, \(\sqrt{2} \) should be rational. This contradicts the fact that \(\sqrt{2} \) is irrational. Therefore, our assumption is false and hence, \(6 + \sqrt{2} \) is irrational.