# NCERT Solutions for Class 8 Maths Chapter 10

NCERT Solutions for Class 8 Maths Chapter 10 VISUALISING SOLID SHAPES Exercise 10.1, Exercise 10.2 and Exercise 10.3 in English Medium and Hindi Medium updated for new academic session 2020-21 based on new NCERT.

Prashnavali 10.1, Prashnavali 10.2 and Prashnavali 10.3 in Hindi Medium free online to use or PDF file format to free download. These NCERT Solutions are based on latest CBSE Curriculum 2020-21 updated for the new sessions 2020-2021 for the students using NCERT Books 2020-21.

## NCERT Solutions for Class 8 Maths Chapter 10

 Class: 8 Subject: Maths – गणित Chapter 10: Visualising Solid Shapes

### Class 8 Maths Chapter 10 Solutions

Class 8 Maths Chapter 10 Visualising Solid Shapes all exercises in English Medium as well as Hindi Medium are given below to use online or download in PDF form. NCERT Solutions 2020-21 and Offline Apps both are in the updated form for new session 2020-2021.

• ### 8 Maths Chapter 10 Solutions in Hindi Medium

#### Class 8 Maths Exercise 10.1 & 10.2 Solutions in Video

Class 8 Maths Exercise 10.1 Solutions in Video
Class 8 Maths Exercise 10.2 Solutions in Video

#### Important Terms about Class 8 Maths Chapter 10

##### Can a polygon have for its faces a square and four triangles?

Yes, a polyhedron has its faces a square and four triangles which makes a pyramid on square base.

##### Is it possible to have a polyhedron with any given number of faces?

It is possible, only if the number of faces are greater than or equal to 4.

##### प्रिज़्म और बेलन किस प्रकार एक जैसे हैं?

प्रिज़्म एक बेलन में परिवर्तित हो जाएगा यदि उसके आधार में भुजाओं की संख्या बहुत अधिक हो।

##### क्या किसी बहुफलक के 10 फलक, 20 किनारे और 15 शीर्ष हो सकते हैं?

यदि F = 10, V = 15 और E = 20 है।
तब, ऑयलर सूत्र से, F + V – E = 2
L.H.S. = F + V – E
= 10 + 15 – 20
= 25 – 20
= 5
R.H.S. = 2
L.H.S. R.H.S.
अतः यहाँ ऑयलर सूत्र सत्यापित नहीं है, इसलिए किसी बहुफलक के 10 फलक, 20 किनारे और 15 शीर्ष नहीं हो सकते।

In Chapter 10 Visualising Solid Shapes, we have to learn about different shapes with 3-D view form Top side or lateral sides. This also provides the information about how to find number of faces, vertices and edges of a solid figure. Each of these solids is made up of polygonal regions which are called its faces; these faces meet at edges which are line segments; and the edges meet at vertices which are points. Such solids are called polyhedrons. A pyramid is a polyhedron whose base is a polygon and whose lateral faces are triangles with a common vertex. (If we join all the corners of a polygon to a point not in its plane, you get a model for pyramid).

##### Euler’s Formula

Euler’s Formula से किसी बहुफलक में, फलकों की संख्या F, शीर्षों की संख्या V तथा किनारों की संख्या E में सम्बन्ध स्थापित किया जा सकता है। Euler’s Formula: F + V – E = 2. इस सूत्र से किसी भी बहुफलक में फलकों की संख्या ज्ञात की जा सकती है।                 